Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2007_25_a6, author = {S. V. Konyagin}, title = {On {Uniformly} {Convergent} {Rearrangements} of {Trigonometric} {Fourier} {Series}}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {80--87}, publisher = {mathdoc}, volume = {25}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2007_25_a6/} }
S. V. Konyagin. On Uniformly Convergent Rearrangements of Trigonometric Fourier Series. Contemporary Mathematics. Fundamental Directions, Theory of functions, Tome 25 (2007), pp. 80-87. http://geodesic.mathdoc.fr/item/CMFD_2007_25_a6/
[1] Zhuk V. V., Approksimatsiya periodicheskikh funktsii, Izd-vo LGU, L., 1982 | MR | Zbl
[2] Kakhan Zh.-P., Sluchainye funktsionalnye ryady, Mir, M., 1973 | MR | Zbl
[3] Konyagin S. V., “O perestanovkakh trigonometricheskikh ryadov Fure”, Vsesoyuznaya shkola “Teoriya priblizheniya funktsii”, Tezisy dokladov, Kiev, 1989, 80
[4] Prakhar K., Raspredelenie prostykh chisel, Mir, M., 1967 | MR
[5] Ulyanov P. L., “Problemy teorii trigonometricheskikh ryadov”, UMN, 19:1 (1964), 3–69 | MR
[6] Chobanyan S. A., “Struktura mnozhestva summ uslovno skhodyaschegosya ryada v normirovannom prostranstve”, Dokl. AN SSSR, 278:3 (1984), 556–559 | MR | Zbl
[7] Chobanyan S. A., “Struktura mnozhestva summ uslovno skhodyaschegosya ryada v normirovannom prostranstve”, Matem. sb., 128:1 (1985), 50–65 | MR | Zbl
[8] Révész Sz. Gy., “Rearrangements of Fourier series”, J. Approx. Theory, 6:1 (1990), 101–121 | DOI | MR
[9] Révész Sz. Gy., “On the convergence of Fourier series of u.a.p. functions”, J. Math. Anal. Appl., 151:2 (1990), 308–317 | DOI | MR | Zbl