On Uniformly Convergent Rearrangements of Trigonometric Fourier Series
Contemporary Mathematics. Fundamental Directions, Theory of functions, Tome 25 (2007), pp. 80-87

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that if the module of continuity $\omega(f,\delta)$ of a $2\pi$-periodic function $f\in C(\mathbb T)$ is $o(1/\log\log1/\delta)$ as $\delta\to0+$ then there exists a rearrangement of the trigonometric Fourier series of $f$ converging uniformly to $f$.
@article{CMFD_2007_25_a6,
     author = {S. V. Konyagin},
     title = {On {Uniformly} {Convergent} {Rearrangements} of {Trigonometric} {Fourier} {Series}},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {80--87},
     publisher = {mathdoc},
     volume = {25},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2007_25_a6/}
}
TY  - JOUR
AU  - S. V. Konyagin
TI  - On Uniformly Convergent Rearrangements of Trigonometric Fourier Series
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2007
SP  - 80
EP  - 87
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2007_25_a6/
LA  - ru
ID  - CMFD_2007_25_a6
ER  - 
%0 Journal Article
%A S. V. Konyagin
%T On Uniformly Convergent Rearrangements of Trigonometric Fourier Series
%J Contemporary Mathematics. Fundamental Directions
%D 2007
%P 80-87
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2007_25_a6/
%G ru
%F CMFD_2007_25_a6
S. V. Konyagin. On Uniformly Convergent Rearrangements of Trigonometric Fourier Series. Contemporary Mathematics. Fundamental Directions, Theory of functions, Tome 25 (2007), pp. 80-87. http://geodesic.mathdoc.fr/item/CMFD_2007_25_a6/