A Weak Generalize Localization of Multiple Fourier Series of Continuous Functions with a~Certain Module of Continuity
Contemporary Mathematics. Fundamental Directions, Theory of functions, Tome 25 (2007), pp. 34-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $E$ be an arbitrary measurable set, $E\subset T^N=[-\pi,\pi)^N$, $N\ge 1$, $\mu E>0$, let $\mu$ be a measure. In this paper, a weak generalize almost everywhere localization is studied, i.e., for given subsets $E_1\subset E$, $\mu E_1>0$ we study the almost everywhere convergence of multiple trigonometric Fourier series of functions those are zero on $E$. We obtain sufficient conditions for the almost everywhere convergence of multiple Fourier series (summable over rectangles) of functions from $H^\omega(T^N)$, $\omega(\delta)=o\left(\left[\log\dfrac1\delta\log\log\log\dfrac1\delta\right]^{-1}\right)$, as $\delta\to0$ on $E_1$. These conditions are given in terms of the sets' $E_1$, $E$ structure and geometry and related to certain orthogonal projections of the sets; they are called the $\mathbb{B}_3$ property of the set $E$. Formerly, one of the authors has introduced the $\mathbb B_k$, $k=1,2$ properties of the set $E$, which are related to one-dimensional and two-dimensional projections of the sets $E$ and $E_1$ respectively, as sufficient conditions for the almost everywhere convergence of Fourier series of functions from $L_1(T^N)$ and $L_p(T^N)$, $p>1$. The presented results generalize these ideas.
@article{CMFD_2007_25_a3,
     author = {I. L. Bloshanskii and T. A. Matseevich},
     title = {A {Weak} {Generalize} {Localization} of {Multiple} {Fourier} {Series} of {Continuous} {Functions} with {a~Certain} {Module} of {Continuity}},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {34--48},
     publisher = {mathdoc},
     volume = {25},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2007_25_a3/}
}
TY  - JOUR
AU  - I. L. Bloshanskii
AU  - T. A. Matseevich
TI  - A Weak Generalize Localization of Multiple Fourier Series of Continuous Functions with a~Certain Module of Continuity
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2007
SP  - 34
EP  - 48
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2007_25_a3/
LA  - ru
ID  - CMFD_2007_25_a3
ER  - 
%0 Journal Article
%A I. L. Bloshanskii
%A T. A. Matseevich
%T A Weak Generalize Localization of Multiple Fourier Series of Continuous Functions with a~Certain Module of Continuity
%J Contemporary Mathematics. Fundamental Directions
%D 2007
%P 34-48
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2007_25_a3/
%G ru
%F CMFD_2007_25_a3
I. L. Bloshanskii; T. A. Matseevich. A Weak Generalize Localization of Multiple Fourier Series of Continuous Functions with a~Certain Module of Continuity. Contemporary Mathematics. Fundamental Directions, Theory of functions, Tome 25 (2007), pp. 34-48. http://geodesic.mathdoc.fr/item/CMFD_2007_25_a3/

[1] Alimov Sh. A., Ilin V. A., Nikishin E. M., “Voprosy skhodimosti kratnykh trigonometricheskikh ryadov i spektralnykh razlozhenii”, UMN, 31:6 (1976), 28–83 | MR | Zbl

[2] Bakhbukh M., Nikishin E. M., “O skhodimosti dvoinykh ryadov Fure ot nepreryvnykh funktsii”, Sib. matem. zhurn., 14:6 (1973), 1189–1199 | Zbl

[3] Bloshanskii I. L., “O ravnoskhodimosti razlozhenii v kratnyi trigonometricheskii ryad Fure i integral Fure”, Matem. zametki, 18:2 (1975), 153–168 9

[4] Bloshanskii I. L., O skhodimosti i lokalizatsii kratnykh ryadov i integralov Fure, Avtoreferat dis. $\dots$ kand. fiz.-matem. nauk, MGU, M., 1978

[5] Bloshanskii I. L., “Obobschennaya lokalizatsiya pochti vsyudu i skhodimost dvoinykh ryadov Fure”, Dokl. AN SSSR, 242:1 (1978), 11–13 | MR

[6] Bloshanskii I. L., “O kriteriyakh slaboi obobschennoi lokalizatsii v $N$-mernom prostranstve”, Dokl. AN SSSR, 271:6 (1983), 1294–1298 | MR

[7] Bloshanskii I. L., “O geometrii mnozhestv v $N$-mernom prostranstve, na kotorykh spravedliva obobschennaya lokalizatsiya dlya kratnykh trigonometricheskikh ryadov Fure funktsii iz $L_p$, $p>1$”, Matem. sb., 121:1 (1983), 87–110 | MR

[8] Bloshanskii I. L., “Dva kriteriya slaboi obobschennoi lokalizatsii dlya kratnykh trigonometricheskikh ryadov Fure funktsii iz $L_p$, $p\ge1$”, Izv. AN SSSR. Ser. matem., 49:2 (1985), 243–282 | MR

[9] Bloshanskii I. L., “Struktura i geometriya maksimalnykh mnozhestv skhodimosti i neogranichennoi raskhodimosti pochti vsyudu kratnykh ryadov Fure funktsii iz $L_1$, ravnykh nulyu na zadannom mnozhestve”, Izv. AN SSSR. Ser. matem., 53:4 (1989), 675–707 | MR

[10] Bloshanskii I. L., Nekotorye voprosy mnogomernogo garmonicheskogo analiza, Avtoreferat dis. $\dots$ dokt. fiz.-matem. nauk, MIAN, M., 1991

[11] Oskolkov K. I., “Otsenka skorosti priblizheniya nepreryvnoi funktsii i ee sopryazhennoi summami Fure na mnozhestve polnoi mery”, Izv. AN SSSR. Ser. matem., 38:6 (1974), 1373–1407 | MR

[12] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[13] Hunt R. A., “On the convergence of Fourier series. Ortogonal expansions and their continuous analogues”, Proc. Conf. Southern Illinois (Univ. Edwardsville, 1967), Southern Illinois Univ. Press, Carbondale III, 1968, 235–255 | MR | Zbl

[14] Tonelli L., Serie trigonometriche, Bologna, 1928