A Weak Generalize Localization of Multiple Fourier Series of Continuous Functions with a~Certain Module of Continuity
Contemporary Mathematics. Fundamental Directions, Theory of functions, Tome 25 (2007), pp. 34-48

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $E$ be an arbitrary measurable set, $E\subset T^N=[-\pi,\pi)^N$, $N\ge 1$, $\mu E>0$, let $\mu$ be a measure. In this paper, a weak generalize almost everywhere localization is studied, i.e., for given subsets $E_1\subset E$, $\mu E_1>0$ we study the almost everywhere convergence of multiple trigonometric Fourier series of functions those are zero on $E$. We obtain sufficient conditions for the almost everywhere convergence of multiple Fourier series (summable over rectangles) of functions from $H^\omega(T^N)$, $\omega(\delta)=o\left(\left[\log\dfrac1\delta\log\log\log\dfrac1\delta\right]^{-1}\right)$, as $\delta\to0$ on $E_1$. These conditions are given in terms of the sets' $E_1$, $E$ structure and geometry and related to certain orthogonal projections of the sets; they are called the $\mathbb{B}_3$ property of the set $E$. Formerly, one of the authors has introduced the $\mathbb B_k$, $k=1,2$ properties of the set $E$, which are related to one-dimensional and two-dimensional projections of the sets $E$ and $E_1$ respectively, as sufficient conditions for the almost everywhere convergence of Fourier series of functions from $L_1(T^N)$ and $L_p(T^N)$, $p>1$. The presented results generalize these ideas.
@article{CMFD_2007_25_a3,
     author = {I. L. Bloshanskii and T. A. Matseevich},
     title = {A {Weak} {Generalize} {Localization} of {Multiple} {Fourier} {Series} of {Continuous} {Functions} with {a~Certain} {Module} of {Continuity}},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {34--48},
     publisher = {mathdoc},
     volume = {25},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2007_25_a3/}
}
TY  - JOUR
AU  - I. L. Bloshanskii
AU  - T. A. Matseevich
TI  - A Weak Generalize Localization of Multiple Fourier Series of Continuous Functions with a~Certain Module of Continuity
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2007
SP  - 34
EP  - 48
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2007_25_a3/
LA  - ru
ID  - CMFD_2007_25_a3
ER  - 
%0 Journal Article
%A I. L. Bloshanskii
%A T. A. Matseevich
%T A Weak Generalize Localization of Multiple Fourier Series of Continuous Functions with a~Certain Module of Continuity
%J Contemporary Mathematics. Fundamental Directions
%D 2007
%P 34-48
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2007_25_a3/
%G ru
%F CMFD_2007_25_a3
I. L. Bloshanskii; T. A. Matseevich. A Weak Generalize Localization of Multiple Fourier Series of Continuous Functions with a~Certain Module of Continuity. Contemporary Mathematics. Fundamental Directions, Theory of functions, Tome 25 (2007), pp. 34-48. http://geodesic.mathdoc.fr/item/CMFD_2007_25_a3/