An Equiconvergence Theorem for an Integral Operator with a Variable Upper Limit of Integration
Contemporary Mathematics. Fundamental Directions, Theory of functions, Tome 25 (2007), pp. 182-191
Voir la notice du chapitre de livre
We suggest simple sufficient conditions on the kernel of the integral operator $$ Af=\int\limits_0^{1-x}A(1-x,t)f(t)\,dt $$ providing expansion with respect to the root functions to be equiconvergent with ordinary Fourier series.
@article{CMFD_2007_25_a14,
author = {A. P. Khromov},
title = {An {Equiconvergence} {Theorem} for an {Integral} {Operator} with {a~Variable} {Upper} {Limit} of {Integration}},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {182--191},
year = {2007},
volume = {25},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2007_25_a14/}
}
TY - JOUR AU - A. P. Khromov TI - An Equiconvergence Theorem for an Integral Operator with a Variable Upper Limit of Integration JO - Contemporary Mathematics. Fundamental Directions PY - 2007 SP - 182 EP - 191 VL - 25 UR - http://geodesic.mathdoc.fr/item/CMFD_2007_25_a14/ LA - ru ID - CMFD_2007_25_a14 ER -
A. P. Khromov. An Equiconvergence Theorem for an Integral Operator with a Variable Upper Limit of Integration. Contemporary Mathematics. Fundamental Directions, Theory of functions, Tome 25 (2007), pp. 182-191. http://geodesic.mathdoc.fr/item/CMFD_2007_25_a14/
[1] Khromov A. P., “Teoremy ravnoskhodimosti dlya integro-differentsialnykh i integralnykh operatorov”, Matem. sb., 114(156):3 (1981), 378–405 | MR | Zbl
[2] Khromov A. P., “Ob obraschenii integralnykh operatorov s yadrami, razryvnymi na diagonalyakh”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Tezisy dokladov 9-i Saratovskoi zimnei shkoly, Saratov, 1997, 162