An Equiconvergence Theorem for an Integral Operator with a~Variable Upper Limit of Integration
Contemporary Mathematics. Fundamental Directions, Theory of functions, Tome 25 (2007), pp. 182-191
Voir la notice de l'article provenant de la source Math-Net.Ru
We suggest simple sufficient conditions on the kernel of the integral operator
$$
Af=\int\limits_0^{1-x}A(1-x,t)f(t)\,dt
$$
providing expansion with respect to the root functions to be equiconvergent with ordinary Fourier series.
@article{CMFD_2007_25_a14,
author = {A. P. Khromov},
title = {An {Equiconvergence} {Theorem} for an {Integral} {Operator} with {a~Variable} {Upper} {Limit} of {Integration}},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {182--191},
publisher = {mathdoc},
volume = {25},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2007_25_a14/}
}
TY - JOUR AU - A. P. Khromov TI - An Equiconvergence Theorem for an Integral Operator with a~Variable Upper Limit of Integration JO - Contemporary Mathematics. Fundamental Directions PY - 2007 SP - 182 EP - 191 VL - 25 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2007_25_a14/ LA - ru ID - CMFD_2007_25_a14 ER -
%0 Journal Article %A A. P. Khromov %T An Equiconvergence Theorem for an Integral Operator with a~Variable Upper Limit of Integration %J Contemporary Mathematics. Fundamental Directions %D 2007 %P 182-191 %V 25 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2007_25_a14/ %G ru %F CMFD_2007_25_a14
A. P. Khromov. An Equiconvergence Theorem for an Integral Operator with a~Variable Upper Limit of Integration. Contemporary Mathematics. Fundamental Directions, Theory of functions, Tome 25 (2007), pp. 182-191. http://geodesic.mathdoc.fr/item/CMFD_2007_25_a14/