An Equiconvergence Theorem for an Integral Operator with a~Variable Upper Limit of Integration
Contemporary Mathematics. Fundamental Directions, Theory of functions, Tome 25 (2007), pp. 182-191.

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest simple sufficient conditions on the kernel of the integral operator $$ Af=\int\limits_0^{1-x}A(1-x,t)f(t)\,dt $$ providing expansion with respect to the root functions to be equiconvergent with ordinary Fourier series.
@article{CMFD_2007_25_a14,
     author = {A. P. Khromov},
     title = {An {Equiconvergence} {Theorem} for an {Integral} {Operator} with {a~Variable} {Upper} {Limit} of {Integration}},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {182--191},
     publisher = {mathdoc},
     volume = {25},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2007_25_a14/}
}
TY  - JOUR
AU  - A. P. Khromov
TI  - An Equiconvergence Theorem for an Integral Operator with a~Variable Upper Limit of Integration
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2007
SP  - 182
EP  - 191
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2007_25_a14/
LA  - ru
ID  - CMFD_2007_25_a14
ER  - 
%0 Journal Article
%A A. P. Khromov
%T An Equiconvergence Theorem for an Integral Operator with a~Variable Upper Limit of Integration
%J Contemporary Mathematics. Fundamental Directions
%D 2007
%P 182-191
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2007_25_a14/
%G ru
%F CMFD_2007_25_a14
A. P. Khromov. An Equiconvergence Theorem for an Integral Operator with a~Variable Upper Limit of Integration. Contemporary Mathematics. Fundamental Directions, Theory of functions, Tome 25 (2007), pp. 182-191. http://geodesic.mathdoc.fr/item/CMFD_2007_25_a14/

[1] Khromov A. P., “Teoremy ravnoskhodimosti dlya integro-differentsialnykh i integralnykh operatorov”, Matem. sb., 114(156):3 (1981), 378–405 | MR | Zbl

[2] Khromov A. P., “Ob obraschenii integralnykh operatorov s yadrami, razryvnymi na diagonalyakh”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Tezisy dokladov 9-i Saratovskoi zimnei shkoly, Saratov, 1997, 162