Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2007_25_a14, author = {A. P. Khromov}, title = {An {Equiconvergence} {Theorem} for an {Integral} {Operator} with {a~Variable} {Upper} {Limit} of {Integration}}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {182--191}, publisher = {mathdoc}, volume = {25}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2007_25_a14/} }
TY - JOUR AU - A. P. Khromov TI - An Equiconvergence Theorem for an Integral Operator with a~Variable Upper Limit of Integration JO - Contemporary Mathematics. Fundamental Directions PY - 2007 SP - 182 EP - 191 VL - 25 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2007_25_a14/ LA - ru ID - CMFD_2007_25_a14 ER -
%0 Journal Article %A A. P. Khromov %T An Equiconvergence Theorem for an Integral Operator with a~Variable Upper Limit of Integration %J Contemporary Mathematics. Fundamental Directions %D 2007 %P 182-191 %V 25 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2007_25_a14/ %G ru %F CMFD_2007_25_a14
A. P. Khromov. An Equiconvergence Theorem for an Integral Operator with a~Variable Upper Limit of Integration. Contemporary Mathematics. Fundamental Directions, Theory of functions, Tome 25 (2007), pp. 182-191. http://geodesic.mathdoc.fr/item/CMFD_2007_25_a14/
[1] Khromov A. P., “Teoremy ravnoskhodimosti dlya integro-differentsialnykh i integralnykh operatorov”, Matem. sb., 114(156):3 (1981), 378–405 | MR | Zbl
[2] Khromov A. P., “Ob obraschenii integralnykh operatorov s yadrami, razryvnymi na diagonalyakh”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Tezisy dokladov 9-i Saratovskoi zimnei shkoly, Saratov, 1997, 162