Linear and Nonlinear Methods of Relief Approximation
Contemporary Mathematics. Fundamental Directions, Theory of functions, Tome 25 (2007), pp. 126-148

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we compare the effectiveness of free (nonlinear) relief approximation, equidistant relief approximation, and polynomial approximation $\mathscr R^{\mathrm{fr}}_N[f]$, $\mathscr R^{\mathrm{eq}}_N[f]$, $\mathscr E_N[f]$ of an individual function $f(\mathbf{x})$ in the metric $\mathscr L^2(\mathbb B^2)$, where $\mathbb B^2$ is the unit ball $|\mathbf{x}|\le1$ in the plane $\mathbb R^2$. The notation we use is the following \begin{gather*} \mathscr R^{\mathrm{fr}}_N[f] :=\inf_{R\in\mathscr W^{\mathrm{fr}}_N}\|f-R\|, \quad \mathscr R^{\mathrm{eq}}_N[f]:=\min_{R\in\mathscr W^{\mathrm{eq}}_N}\|f-R\|, \\ \mathscr E_N[f]:=\min_{P\in\mathscr{P}^2_{N-1}}\|f-P\|. \end{gather*} Here $\mathscr W^{\mathrm{fr}}_N$ is the set of all $N$-term linear combinations of functions of the plane wave type $$ R(\mathbf{x})=\sum_1^N W_j(\mathbf{x}\cdot\boldsymbol\theta_j) $$ with arbitrary profiles $W_j(x)$, $x\in\mathbb R^1$ and transmission directions $\{\boldsymbol\theta_j\}_1^N$; $\mathscr W^{\mathrm{eq}}_N$ is the subset of $\mathscr W^{\mathrm{fr}}_N$ associated with $N$ equidistant directions; $$ \mathscr{P}^2_{N-1}:=\operatorname{Span}\{x_1^kx_2^l\}_{k+l} $$ denotes the subspace of algebraic polynomials of degree less or equal to $N-1$ in two real variables. Obviously, inequalities $\mathscr R^{\mathrm{fr}}_N[f] \le\mathscr R^{\mathrm{eq}}_N[f]\le\mathscr E_N[f]$ hold. We state the following model problem. What are the functions which satisfy the relation $\mathscr R^{\mathrm{fr}}_N[f]=o(\mathscr R^{\mathrm{eq}}_N[f])$, i.e., where nonlinear approximation $\mathscr R^{\mathrm{fr}}$ is more effective than linear one? This effect have been proved for harmonic functions, namely, for any $\varepsilon>0$ there exists $c_\varepsilon>0$ such that if $\Delta f(\mathbf{x})=0$, $|\mathbf{x}|1$, $f\in\mathscr L^2(\mathbb B^2)$, then $$ \mathscr R^{\mathrm{fr}}_N[f] \le c_\varepsilon\big(\mathscr R^{\mathrm{eq}}_N[f]\exp(-N^\varepsilon)+\mathscr R^{\mathrm{eq}}_{N^{2-3\varepsilon}}[f]\big). $$ On the other hand, $\mathscr R^{\mathrm{fr}}_N[f]\ge\frac1c\mathscr R^{\mathrm{eq}}_{N^2}[f]$. Thus $\mathscr R^{\mathrm{fr}}_N[f]$ has an “almost squared effectiveness” of $\mathscr R^{\mathrm{eq}}_N[f]$ for $f=f_{\mathrm{harm}}$. However, this ultra-high order of approximation is obtained via a collaps of wave vectors. On the other hand, the nonlinearity of $\mathscr R^{\mathrm{fr}}$ which corresponds to the freedom of choice of wave vectors, does not much improve the order of approximation, for instance, for all the radial functions. If $f(\mathbf{x})=f(|\mathbf{x}|)$, then $\mathscr E_{2N}[f]\ge\mathscr R^{\mathrm{eq}}_N[f]\ge\sqrt{\dfrac23}\mathscr E_{2N}(f)$ and $\mathscr R^{\mathrm{fr}}_N[f]\ge\sup\limits_{\varepsilon>0}\sqrt{\dfrac\varepsilon{3(1+\varepsilon)}}\mathscr R^{\mathrm{eq}}_{(1+\varepsilon)N}[f]$. The technique we use is the Fourier–Chebyshev analysis (which is related to the inverse Radon transform on $\mathbb B^2$) and a duality between the relief approximation problem and the optimization of quadrature formulas in the sense of Kolmogorov–Nikolskii [1] for trigonometric polynomials classes.
@article{CMFD_2007_25_a10,
     author = {K. I. Oskolkov},
     title = {Linear and {Nonlinear} {Methods} of {Relief} {Approximation}},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {126--148},
     publisher = {mathdoc},
     volume = {25},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2007_25_a10/}
}
TY  - JOUR
AU  - K. I. Oskolkov
TI  - Linear and Nonlinear Methods of Relief Approximation
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2007
SP  - 126
EP  - 148
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2007_25_a10/
LA  - ru
ID  - CMFD_2007_25_a10
ER  - 
%0 Journal Article
%A K. I. Oskolkov
%T Linear and Nonlinear Methods of Relief Approximation
%J Contemporary Mathematics. Fundamental Directions
%D 2007
%P 126-148
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2007_25_a10/
%G ru
%F CMFD_2007_25_a10
K. I. Oskolkov. Linear and Nonlinear Methods of Relief Approximation. Contemporary Mathematics. Fundamental Directions, Theory of functions, Tome 25 (2007), pp. 126-148. http://geodesic.mathdoc.fr/item/CMFD_2007_25_a10/