On Conditions of the Average Convergence (Upper Boundedness) of Trigonometric Series
Contemporary Mathematics. Fundamental Directions, Theory of functions, Tome 25 (2007), pp. 8-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $c_n=\widehat f(n)$ be Fourier coefficients of a function $f\in L_{2\pi}$. We prove that the condition $$ \sum_{k=\left[\frac n2\right]}^{2n}\frac{|c_k|+|c_{-k}|}{|n-k|+1}=o(1) \quad \big(=O(1)\big) $$ is necessary for the convergence of the Fourier series of $f$ in the $L$-metric; moreover, this condition is sufficient under some additional hypothesis for Fourier coefficients of $f$.
@article{CMFD_2007_25_a1,
     author = {A. S. Belov},
     title = {On {Conditions} of the {Average} {Convergence} {(Upper} {Boundedness)} of {Trigonometric} {Series}},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {8--20},
     publisher = {mathdoc},
     volume = {25},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2007_25_a1/}
}
TY  - JOUR
AU  - A. S. Belov
TI  - On Conditions of the Average Convergence (Upper Boundedness) of Trigonometric Series
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2007
SP  - 8
EP  - 20
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2007_25_a1/
LA  - ru
ID  - CMFD_2007_25_a1
ER  - 
%0 Journal Article
%A A. S. Belov
%T On Conditions of the Average Convergence (Upper Boundedness) of Trigonometric Series
%J Contemporary Mathematics. Fundamental Directions
%D 2007
%P 8-20
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2007_25_a1/
%G ru
%F CMFD_2007_25_a1
A. S. Belov. On Conditions of the Average Convergence (Upper Boundedness) of Trigonometric Series. Contemporary Mathematics. Fundamental Directions, Theory of functions, Tome 25 (2007), pp. 8-20. http://geodesic.mathdoc.fr/item/CMFD_2007_25_a1/

[1] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[2] Belov A. S., “Ob usloviyakh skhodimosti v srednem trigonometricheskikh ryadov Fure”, Tezisy dokladov mezhdunarodnoi konferentsii “Teoriya priblizhenii i garmonicheskii analiz” (Tula, 26—29 maya 1998 g.), Tula, 1998, 38–40 | MR

[3] Zigmund A., Trigonometricheskie ryady, T. 1, Mir, M., 1965 | MR

[4] Zigmund A., Trigonometricheskie ryady, T. 2, Mir, M., 1965 | MR

[5] Telyakovskii S. A., “Usloviya integriruemosti trigonometricheskikh ryadov i ikh prilozhenie k izucheniyu lineinykh metodov summirovaniya ryadov”, Izv. AN SSSR. Ser. matem., 28:6 (1964), 1209–1236 | Zbl

[6] Telyakovskii S. A., “Asimptoticheskaya otsenka integrala ot modulya funktsii, zadannoi ryadom iz sinusov”, Sib. matem. zhurn., 8:6 (1967), 1416–1422

[7] Telyakovskii S. A., “K voprosu o skhodimosti ryadov Fure v metrike $L$”, Matem. zametki, 1:1 (1967), 91–98 | Zbl

[8] Fomin G. A., “O nekotorykh usloviyakh skhodimosti ryadov Fure v metrike $L$”, Matem. zametki, 21:4 (1977), 587–592 | MR | Zbl

[9] Fomin G. A., “Ob odnom klasse trigonometricheskikh ryadov”, Matem. zametki, 23:2 (1978), 213–222 | MR | Zbl

[10] McGehee O. C., Pigno L., Smith B., “Hardy's inequality and the $L^1$-norm of exponential sums”, Ann. of Math. (2), 113:3 (1981), 613–618 | DOI | MR | Zbl