On Conditions of the Average Convergence (Upper Boundedness) of Trigonometric Series
Contemporary Mathematics. Fundamental Directions, Theory of functions, Tome 25 (2007), pp. 8-20

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $c_n=\widehat f(n)$ be Fourier coefficients of a function $f\in L_{2\pi}$. We prove that the condition $$ \sum_{k=\left[\frac n2\right]}^{2n}\frac{|c_k|+|c_{-k}|}{|n-k|+1}=o(1) \quad \big(=O(1)\big) $$ is necessary for the convergence of the Fourier series of $f$ in the $L$-metric; moreover, this condition is sufficient under some additional hypothesis for Fourier coefficients of $f$.
@article{CMFD_2007_25_a1,
     author = {A. S. Belov},
     title = {On {Conditions} of the {Average} {Convergence} {(Upper} {Boundedness)} of {Trigonometric} {Series}},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {8--20},
     publisher = {mathdoc},
     volume = {25},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2007_25_a1/}
}
TY  - JOUR
AU  - A. S. Belov
TI  - On Conditions of the Average Convergence (Upper Boundedness) of Trigonometric Series
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2007
SP  - 8
EP  - 20
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2007_25_a1/
LA  - ru
ID  - CMFD_2007_25_a1
ER  - 
%0 Journal Article
%A A. S. Belov
%T On Conditions of the Average Convergence (Upper Boundedness) of Trigonometric Series
%J Contemporary Mathematics. Fundamental Directions
%D 2007
%P 8-20
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2007_25_a1/
%G ru
%F CMFD_2007_25_a1
A. S. Belov. On Conditions of the Average Convergence (Upper Boundedness) of Trigonometric Series. Contemporary Mathematics. Fundamental Directions, Theory of functions, Tome 25 (2007), pp. 8-20. http://geodesic.mathdoc.fr/item/CMFD_2007_25_a1/