Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2007_24_a0, author = {Ya. M. Dymarskii}, title = {Manifold {Method} in {Eigenvector} {Theory} of {Nonlinear} {Operators}}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {3--159}, publisher = {mathdoc}, volume = {24}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2007_24_a0/} }
Ya. M. Dymarskii. Manifold Method in Eigenvector Theory of Nonlinear Operators. Contemporary Mathematics. Fundamental Directions, Functional analysis, Tome 24 (2007), pp. 3-159. http://geodesic.mathdoc.fr/item/CMFD_2007_24_a0/
[1] Arnold V. I., “Mody i kvazimody”, Funkts. analiz i ego prilozh., 6:2 (1972), 12–20 | MR | Zbl
[2] Arnold V. I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978, 304 pp. | MR
[3] Arnold V. I., “Zamechaniya o sobstvennykh chislakh i vektorakh ermitovykh matrits, faze Berri, adiabaticheskikh svyaznostyakh i kvantovom effekte Kholla”, Izbrannoe, Fazis, M., 1998, 583–604
[4] Borisovich Yu. G., Zvyagin V. G., Sapronov Yu. I., “Nelineinye fredgolmovy otobrazheniya i teoriya Lere–Shaudera”, Usp. mat. nauk, 32:4 (1977), 3–54 | MR | Zbl
[5] Bers L., Dzhon F., Shekhter M., Uravneniya s chastnymi proizvodnymi, Mir, M., 1966, 351 pp. | MR | Zbl
[6] Vainberg M. M., Variatsionnyi metod i metod monotonnykh operatorov, Nauka, M., 1972, 415 pp. | MR | Zbl
[7] Vishik M. I., Kuksin S. B., “O kvazilineinykh ellipticheskikh uravneniyakh”, Usp. mat. nauk, 40:5 (1985), 306–307 | MR
[8] Vishik M. I., Kuksin S. B., “Kvazilineinye ellipticheskie uravneniya i fredgolmovy mnogoobraziya”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1985, no. 6, 23–30 | MR
[9] Gantmakher F. R., Krein M. G., Ostsillyatsionnye matritsy i yadra i malye kolebaniya mekhanicheskikh sistem, GITTL, M., L., 1950, 359 pp.
[10] Geiler V. A., Senatorov M. M., “Struktura spektra operatora Shredingera s magnitnym polem v polose i beskonechnozonnye potentsialy”, Mat. sb., 188:5 (1997), 21–32 | MR | Zbl
[11] Gelfand I. M., Lektsii po lineinoi algebre, Nauka, M., 1971, 271 pp. | MR
[12] Gilbarg V., Trudinger N. S., Differentsialnye uravneniya vtorogo poryadka, Mir, M., 1989, 434 pp.
[13] Dymarskii Ya. M., “O teoreme Lyusternika dlya dvukhtochechnoi zadachi chetvertogo poryadka”, Kachestvennye i priblizhennye metody issledovaniya operatornykh uravnenii, Mezhvuz. sb., Yaroslavl, 1984, 16–24 | MR
[14] Dymarskii Ya. M., “Suschestvovanie, ostsillyatsionnye svoistva i asimptotika normirovannykh sobstvennykh funktsii nelineinykh kraevykh zadach”, Kachestvennye i priblizhennye metody issledovaniya operatornykh uravnenii, Mezhvuz. sb., Yaroslavl, 1985, 133–139 | MR
[15] Dymarskii Ya. M., “O normirovannykh sobstvennykh funktsiyakh dvukhtochechnoi nelineinoi kraevoi zadachi”, Dokl. AN USSR, ser. A, 1984, no. 4, 4–8 | MR | Zbl
[16] Dymarskii Ya. M., “O normirovannykh sobstvennykh funktsiyakh nekotorogo klassa kvazilineinykh ellipticheskikh uravnenii”, Diff. ur-ya, 34:1 (1998), 127–129 | MR | Zbl
[17] Dymarskii Ya. M., “O mnogoobraziyakh sobstvennykh vektorov lineinykh i kvazilineinykh konechnomernykh samosopryazhennykh operatorov, I”, Ukr. mat. zh., 53:2 (2001), 156–167 | MR | Zbl
[18] Dymarskii Ya. M., “O mnogoobraziyakh sobstvennykh vektorov lineinykh i kvazilineinykh konechnomernykh samosopryazhennykh operatorov, II”, Ukr. mat. zh., 53:3 (2001), 296–301 | MR | Zbl
[19] Dymarskii Ya. M., “O tipichnykh bifurkatsiyakh v odnom klasse operatornykh uravnenii”, Dokl. RAN, 338:4 (1994), 446–449 | MR | Zbl
[20] Dymarskii Ya. M., “Mnogoobraziya sobstvennykh funktsii i potentsialov semeistva periodicheskikh zadach Shturma–Liuvillya”, Ukr. mat. zh., 54:8 (2002), 1042–1052 | MR | Zbl
[21] Dymarskii Ya. M., “Mnogoobraziya samosopryazhennykh operatorov s kratnymi sobstvennymi znacheniyami”, Mat. fizika, analiz, geometriya, 8:2 (2001), 148–157 | MR | Zbl
[22] Dymarskii Ya. M., “Pro kvaziliniine zobrazhennya skinchennovimirnikh nelininikh operatoriv”, Visnik Kiivskogo universitetu, 2002, no. 2, 27–32 | MR | Zbl
[23] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya. Metody teorii gomologii, Nauka, M., 1984, 343 pp. | MR
[24] Zabreiko P. P., Povolotskii A. I., “Kvazilineinye operatory i uravnenie Gammershteina”, Mat. zametki, 7:6 (1971), 453–464
[25] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, ILL, Moskva, 1954, 828 pp.
[26] Kelli Dzh., Obschaya topologiya, Mir, M., 1968, 383 pp.
[27] Krasnoselskii A. M., Rachinskii D. I., “O chisle neogranichennykh vetvei reshenii v okrestnosti asimptoticheskoi tochki bifurkatsii”, Funkts. analiz i ego prilozh., 39:3 (2005), 37–53 | MR | Zbl
[28] Krasnoselskii V. M., “Proektsionnyi metod issledovaniya bifurkatsii nulevogo resheniya nelineinogo operatornogo uravneniya pri mnogomernom vyrozhdenii”, Dokl. AN SSSR, 198:6 (1971), 1265–1268 | MR
[29] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, GITTL, M., 1956, 392 pp. | MR
[30] Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969, 455 pp. | MR
[31] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975, 511 pp. | MR
[32] Kurant R., Gilbert D., Metody matematicheskoi fiziki, T. 1, GITTL, M., L., 1951, 476 pp. | MR
[33] Lavrentev M. A., Lyusternik L. A., Variatsionnoe ischislenie 2, GITTL, M., 1935, 343 pp.
[34] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973, 5756 pp. | MR
[35] Landau L. D., Lifshits E. M., Teoreticheskaya fizika. T. 3: Kvantovaya mekhanika, V 9-ti tomakh, Nauka, M., 1974, 752 pp. | MR
[36] Leng S., Vvedenie v teoriyu differentsiruemykh mnogoobrazii, Mir, M., 1967, 204 pp.
[37] Lyusternik L. A., “Topologiya i variatsionnoe ischislenie”, Usp. mat. nauk, 1:1 (1946), 30–56 | MR | Zbl
[38] Lyusternik L. A., “Ob odnoi kraevoi zadache v teorii nelineinykh differentsialnykh uravnenii”, DAN SSSR, 33 (1941), 5–8 | Zbl
[39] Lyusternik L. A., “Nekotorye voprosy nelineinogo funktsionalnogo analiza”, Usp. mat. nauk, 11:6 (1956), 145–168 | MR | Zbl
[40] Marchenko V. A., Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977, 331 pp. | MR
[41] Milnor Dzh., Teoriya Morsa, Mir, M., 1965, 184 pp. | MR
[42] Mizokhata S., Teoriya uravnenii s chastnymi proizvodnymi, Mir, M., 1977, 504 pp.
[43] Mischenko A. S., Solovev Yu. P., Fomenko A. T., Sbornik zadach po differentsialnoi geometrii i topologii, Izd-vo MGU, M., 1981, 183 pp. | Zbl
[44] Moren K., Metody gilbertova prostranstva, Mir, M., 1965, 570 pp. | MR
[45] Nirenberg L., Lektsii po nelineinomu funktsionalnomu analizu, Mir, M., 1977, 232 pp. | MR | Zbl
[46] Perov A. I., “O printsipe nepodvizhnoi tochki s dvustoronnimi otsenkami”, Dokl. AN SSSR, 124:4 (1959), 756–759 | MR | Zbl
[47] Pokhozhaev S. I., “O metode rassloeniya resheniya nelineinykh kraevykh zadach”, Tr. mat. inst. AN SSSR, 192, 1990, 146–163 | MR | Zbl
[48] Rurginon Zh. P., “Uravnenie Shturma–Liuvillya, u kotorogo vse resheniya periodicheskie”, V kn.: Besse A., Mnogoobraziya s zamknutymi geodezicheskimi, Mir, M., 1981, 290–305 | MR
[49] Skrypnik I. V., Metody issledovaniya nelineinykh ellipticheskikh granichnykh zadach, Nauka, M., 1990, 442 pp. | MR
[50] Keller Dzh., Antman S. (red.), Teoriya vetvleniya i nelineinye zadachi na sobstvennye znacheniya, Mir, M., 1974, 254 pp. | Zbl
[51] Faddeev L. D., Yakubovskii O. A., Lektsii po kvantovoi mekhanike dlya studentov-matematikov, RKhD, Izhevsk, 2001, 256 pp.
[52] Fedoryuk M. V., Obyknovennye differentsialnye uravneniya, Nauka, M., 1980, 350 pp. | MR | Zbl
[53] Fomenko A. T., Fuks D. B., Kurs gomotopicheskoi topologii, Nauka, M., 1989, 494 pp. | MR
[54] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970, 720 pp. | MR | Zbl
[55] Appell J., De Pascale, Vignoli A., “A comparison of different spectra for nonliunear operators”, Nonlinear Anal. TMA, 40:1 (2000), 73–90 | DOI | MR | Zbl
[56] Appell J., Dorfner M., “Some spectral theory for nonlinear operators”, Nonlinear Anal. TMA, 28:12 (1997), 1955–1976 | DOI | MR | Zbl
[57] Arnold V. I., Arnold's Problems, Springer–Phasis, 2004, 639 pp. | MR
[58] Bailey P. B., “An eigenvalue theorem for nonlinear second order differential equations”, J. Math. Anal. Appl., 20 (1967), 94–102 | DOI | MR | Zbl
[59] Berestycki H., “On same Sturm–Liouville problems”, J. Differ. Equations, 26 (1977), 375–399 | DOI | MR
[60] Cosner Ch., “Bifurcations from higher eigenvalues”, Nonlinear Anal. TMA, 12:3 (1988), 271–277 | DOI | MR | Zbl
[61] Crendall M. G., Rabinowitz P. H., “Bifurcation from simple eigenvalue”, J. Funct. Anal., 8 (1977), 321–340 | DOI | MR
[62] Dancer E. N., “On the structure of solutions of nonlinear eigenvalue problem”, Indiana Univ. Math. J., 23:11 (1974), 1069–1076 | DOI | MR | Zbl
[63] Dymarskii Ya. M., “On quasi-linear representation of nonlinear strongly continuous operators”, Methods Funct. Anal. Topol., 8:3 (2002), 20–26 | MR | Zbl
[64] Dymarskii Ya. M., “Intersection namber and eigenvectors of quasilinear Hilbert–Schmidt operators”, Mat. fizika, analiz, geometriya, 9:4 (2002), 604–621 | MR | Zbl
[65] Dymarskii Ya. M., “On manyfolds of self-adjoint elliptic operators with multiple eigenvalues”, Methods Funct. Anal. Topol., 7:2 (2001), 68–74 | MR
[66] Fitzpatrick P., Pejsachowicz J., “Orientation and the Leray–Shauder theory for fully nonlinear elliptic boundary value problems”, Memoirs Amer. Math. Soc., 101, no. 483, 1993, 131 c | MR
[67] Friedlander L., “On the second eigenvalue of the Dirichlet Laplacian”, Izrael J. Math., 9 (1992), 23–32 | DOI | MR
[68] Fuĉik S., Neĉas J., Soĉuek V., Pectral analysis of nonlinear operators, Springer–Verlag, Berlin, Heidelberg, New York, 1973, 387 pp.
[69] Fujiwara D., Tanikawa M., Yukita Sh., “The spectrum of the Laplasian I”, Proc. Lap. Acad. Ser. A, 54:4 (1978), 87–91 | DOI | MR | Zbl
[70] Fulton W., Young tableaux, with Applications to Representation Theory and Geometry, Cambridge Univ. Press, 1997 | MR | Zbl
[71] Ize J. A., “Bifurcation theory for Fredholm operators”, Mem. Amer. Math. Soc., 7, no. 174, 1976, 128 pp. | MR
[72] Ince E. L., “A proof of the impossibility of the coexistence of two Mathieu functions”, Proc. Cambr. Phil. Soc., 21 (1922), 117–120 | Zbl
[73] Lions P. L., “The Choquard equation and related questions”, Nonlinear Anal. TMA, 4:6 (1980), 1063–1073 | DOI | MR
[74] Lupo D., Micheletti A. M., “On the persistence of the multiplicity of eigenvalues for some variational operator depending on the domain”, J. Math. Anal. and Appl., 193 (1995), 990–1002 | DOI | MR | Zbl
[75] Lupo D., Micheletti A. M., “On the persistence of the multiplicity of eigenvalues for some variational operator depending on the domain”, J. Math. Anal. Appl., 193 (1995), 990–1002 | DOI | MR | Zbl
[76] Lupo D., Micheletti A. M., “On the persistence of the multiplicity of eigenvalues for some variational operator depending on the domain”, J. Math. Anal. Appl., 193 (1995), 990–1002 | DOI | MR | Zbl
[77] Neuman F., “Linear differential equations of the second order and their application”, Rend. Mat. 3, Ser. 6, 4 (1971), 559–616 | MR
[78] Rabinowitz P. H., “Some global resuits for nonlinear eigenvalue problems”, J. Funct. Anal., 7 (1971), 487–513 | DOI | MR | Zbl
[79] Smale S., “An infinite dimensional version of Sard's theorem”, Amer. J. Math., 85 (1965), 861–866 | DOI | MR
[80] Tal A., “Eigenfunctions for a class a nonlinear differential equations”, J. Differ. Equations, 3 (1967), 112–134 | DOI | MR | Zbl
[81] Turner R. E. L., “Nonlinear eigenvalue problems with nonlocal operators”, Comm. Pure Appl. Math., 23:6 (1970), 963–972 | DOI | MR | Zbl
[82] Uhlenbeck K., “Generic properties of eigenfunctions”, Amer. J. Math., 98:4 (1976), 1059–1078. | DOI | MR | Zbl
[83] Whyburn G. T., Topological analysis, Chap. I, Princeton Univ. Press., Princeton, 1958, 119 pp. | MR | Zbl