Manifold Method in Eigenvector Theory of Nonlinear Operators
Contemporary Mathematics. Fundamental Directions, Functional analysis, Tome 24 (2007), pp. 3-159.

Voir la notice de l'article provenant de la source Math-Net.Ru

First of all, this work is devoted to studying eigenvectors of nonlinear operators of general form. It is shown that manifolds generated by a family of linear operators are naturally connected with a nonlinear operator. These manifolds are an effective tool for studying the eigenvector problem of nonlinear, as well as linear operators. The description of the properties of the manifolds is of independent interest, and a considerable part of the work is devoted to it.
@article{CMFD_2007_24_a0,
     author = {Ya. M. Dymarskii},
     title = {Manifold {Method} in {Eigenvector} {Theory} of {Nonlinear} {Operators}},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {3--159},
     publisher = {mathdoc},
     volume = {24},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2007_24_a0/}
}
TY  - JOUR
AU  - Ya. M. Dymarskii
TI  - Manifold Method in Eigenvector Theory of Nonlinear Operators
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2007
SP  - 3
EP  - 159
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2007_24_a0/
LA  - ru
ID  - CMFD_2007_24_a0
ER  - 
%0 Journal Article
%A Ya. M. Dymarskii
%T Manifold Method in Eigenvector Theory of Nonlinear Operators
%J Contemporary Mathematics. Fundamental Directions
%D 2007
%P 3-159
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2007_24_a0/
%G ru
%F CMFD_2007_24_a0
Ya. M. Dymarskii. Manifold Method in Eigenvector Theory of Nonlinear Operators. Contemporary Mathematics. Fundamental Directions, Functional analysis, Tome 24 (2007), pp. 3-159. http://geodesic.mathdoc.fr/item/CMFD_2007_24_a0/

[1] Arnold V. I., “Mody i kvazimody”, Funkts. analiz i ego prilozh., 6:2 (1972), 12–20 | MR | Zbl

[2] Arnold V. I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978, 304 pp. | MR

[3] Arnold V. I., “Zamechaniya o sobstvennykh chislakh i vektorakh ermitovykh matrits, faze Berri, adiabaticheskikh svyaznostyakh i kvantovom effekte Kholla”, Izbrannoe, Fazis, M., 1998, 583–604

[4] Borisovich Yu. G., Zvyagin V. G., Sapronov Yu. I., “Nelineinye fredgolmovy otobrazheniya i teoriya Lere–Shaudera”, Usp. mat. nauk, 32:4 (1977), 3–54 | MR | Zbl

[5] Bers L., Dzhon F., Shekhter M., Uravneniya s chastnymi proizvodnymi, Mir, M., 1966, 351 pp. | MR | Zbl

[6] Vainberg M. M., Variatsionnyi metod i metod monotonnykh operatorov, Nauka, M., 1972, 415 pp. | MR | Zbl

[7] Vishik M. I., Kuksin S. B., “O kvazilineinykh ellipticheskikh uravneniyakh”, Usp. mat. nauk, 40:5 (1985), 306–307 | MR

[8] Vishik M. I., Kuksin S. B., “Kvazilineinye ellipticheskie uravneniya i fredgolmovy mnogoobraziya”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1985, no. 6, 23–30 | MR

[9] Gantmakher F. R., Krein M. G., Ostsillyatsionnye matritsy i yadra i malye kolebaniya mekhanicheskikh sistem, GITTL, M., L., 1950, 359 pp.

[10] Geiler V. A., Senatorov M. M., “Struktura spektra operatora Shredingera s magnitnym polem v polose i beskonechnozonnye potentsialy”, Mat. sb., 188:5 (1997), 21–32 | MR | Zbl

[11] Gelfand I. M., Lektsii po lineinoi algebre, Nauka, M., 1971, 271 pp. | MR

[12] Gilbarg V., Trudinger N. S., Differentsialnye uravneniya vtorogo poryadka, Mir, M., 1989, 434 pp.

[13] Dymarskii Ya. M., “O teoreme Lyusternika dlya dvukhtochechnoi zadachi chetvertogo poryadka”, Kachestvennye i priblizhennye metody issledovaniya operatornykh uravnenii, Mezhvuz. sb., Yaroslavl, 1984, 16–24 | MR

[14] Dymarskii Ya. M., “Suschestvovanie, ostsillyatsionnye svoistva i asimptotika normirovannykh sobstvennykh funktsii nelineinykh kraevykh zadach”, Kachestvennye i priblizhennye metody issledovaniya operatornykh uravnenii, Mezhvuz. sb., Yaroslavl, 1985, 133–139 | MR

[15] Dymarskii Ya. M., “O normirovannykh sobstvennykh funktsiyakh dvukhtochechnoi nelineinoi kraevoi zadachi”, Dokl. AN USSR, ser. A, 1984, no. 4, 4–8 | MR | Zbl

[16] Dymarskii Ya. M., “O normirovannykh sobstvennykh funktsiyakh nekotorogo klassa kvazilineinykh ellipticheskikh uravnenii”, Diff. ur-ya, 34:1 (1998), 127–129 | MR | Zbl

[17] Dymarskii Ya. M., “O mnogoobraziyakh sobstvennykh vektorov lineinykh i kvazilineinykh konechnomernykh samosopryazhennykh operatorov, I”, Ukr. mat. zh., 53:2 (2001), 156–167 | MR | Zbl

[18] Dymarskii Ya. M., “O mnogoobraziyakh sobstvennykh vektorov lineinykh i kvazilineinykh konechnomernykh samosopryazhennykh operatorov, II”, Ukr. mat. zh., 53:3 (2001), 296–301 | MR | Zbl

[19] Dymarskii Ya. M., “O tipichnykh bifurkatsiyakh v odnom klasse operatornykh uravnenii”, Dokl. RAN, 338:4 (1994), 446–449 | MR | Zbl

[20] Dymarskii Ya. M., “Mnogoobraziya sobstvennykh funktsii i potentsialov semeistva periodicheskikh zadach Shturma–Liuvillya”, Ukr. mat. zh., 54:8 (2002), 1042–1052 | MR | Zbl

[21] Dymarskii Ya. M., “Mnogoobraziya samosopryazhennykh operatorov s kratnymi sobstvennymi znacheniyami”, Mat. fizika, analiz, geometriya, 8:2 (2001), 148–157 | MR | Zbl

[22] Dymarskii Ya. M., “Pro kvaziliniine zobrazhennya skinchennovimirnikh nelininikh operatoriv”, Visnik Kiivskogo universitetu, 2002, no. 2, 27–32 | MR | Zbl

[23] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya. Metody teorii gomologii, Nauka, M., 1984, 343 pp. | MR

[24] Zabreiko P. P., Povolotskii A. I., “Kvazilineinye operatory i uravnenie Gammershteina”, Mat. zametki, 7:6 (1971), 453–464

[25] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, ILL, Moskva, 1954, 828 pp.

[26] Kelli Dzh., Obschaya topologiya, Mir, M., 1968, 383 pp.

[27] Krasnoselskii A. M., Rachinskii D. I., “O chisle neogranichennykh vetvei reshenii v okrestnosti asimptoticheskoi tochki bifurkatsii”, Funkts. analiz i ego prilozh., 39:3 (2005), 37–53 | MR | Zbl

[28] Krasnoselskii V. M., “Proektsionnyi metod issledovaniya bifurkatsii nulevogo resheniya nelineinogo operatornogo uravneniya pri mnogomernom vyrozhdenii”, Dokl. AN SSSR, 198:6 (1971), 1265–1268 | MR

[29] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, GITTL, M., 1956, 392 pp. | MR

[30] Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969, 455 pp. | MR

[31] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975, 511 pp. | MR

[32] Kurant R., Gilbert D., Metody matematicheskoi fiziki, T. 1, GITTL, M., L., 1951, 476 pp. | MR

[33] Lavrentev M. A., Lyusternik L. A., Variatsionnoe ischislenie 2, GITTL, M., 1935, 343 pp.

[34] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973, 5756 pp. | MR

[35] Landau L. D., Lifshits E. M., Teoreticheskaya fizika. T. 3: Kvantovaya mekhanika, V 9-ti tomakh, Nauka, M., 1974, 752 pp. | MR

[36] Leng S., Vvedenie v teoriyu differentsiruemykh mnogoobrazii, Mir, M., 1967, 204 pp.

[37] Lyusternik L. A., “Topologiya i variatsionnoe ischislenie”, Usp. mat. nauk, 1:1 (1946), 30–56 | MR | Zbl

[38] Lyusternik L. A., “Ob odnoi kraevoi zadache v teorii nelineinykh differentsialnykh uravnenii”, DAN SSSR, 33 (1941), 5–8 | Zbl

[39] Lyusternik L. A., “Nekotorye voprosy nelineinogo funktsionalnogo analiza”, Usp. mat. nauk, 11:6 (1956), 145–168 | MR | Zbl

[40] Marchenko V. A., Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977, 331 pp. | MR

[41] Milnor Dzh., Teoriya Morsa, Mir, M., 1965, 184 pp. | MR

[42] Mizokhata S., Teoriya uravnenii s chastnymi proizvodnymi, Mir, M., 1977, 504 pp.

[43] Mischenko A. S., Solovev Yu. P., Fomenko A. T., Sbornik zadach po differentsialnoi geometrii i topologii, Izd-vo MGU, M., 1981, 183 pp. | Zbl

[44] Moren K., Metody gilbertova prostranstva, Mir, M., 1965, 570 pp. | MR

[45] Nirenberg L., Lektsii po nelineinomu funktsionalnomu analizu, Mir, M., 1977, 232 pp. | MR | Zbl

[46] Perov A. I., “O printsipe nepodvizhnoi tochki s dvustoronnimi otsenkami”, Dokl. AN SSSR, 124:4 (1959), 756–759 | MR | Zbl

[47] Pokhozhaev S. I., “O metode rassloeniya resheniya nelineinykh kraevykh zadach”, Tr. mat. inst. AN SSSR, 192, 1990, 146–163 | MR | Zbl

[48] Rurginon Zh. P., “Uravnenie Shturma–Liuvillya, u kotorogo vse resheniya periodicheskie”, V kn.: Besse A., Mnogoobraziya s zamknutymi geodezicheskimi, Mir, M., 1981, 290–305 | MR

[49] Skrypnik I. V., Metody issledovaniya nelineinykh ellipticheskikh granichnykh zadach, Nauka, M., 1990, 442 pp. | MR

[50] Keller Dzh., Antman S. (red.), Teoriya vetvleniya i nelineinye zadachi na sobstvennye znacheniya, Mir, M., 1974, 254 pp. | Zbl

[51] Faddeev L. D., Yakubovskii O. A., Lektsii po kvantovoi mekhanike dlya studentov-matematikov, RKhD, Izhevsk, 2001, 256 pp.

[52] Fedoryuk M. V., Obyknovennye differentsialnye uravneniya, Nauka, M., 1980, 350 pp. | MR | Zbl

[53] Fomenko A. T., Fuks D. B., Kurs gomotopicheskoi topologii, Nauka, M., 1989, 494 pp. | MR

[54] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970, 720 pp. | MR | Zbl

[55] Appell J., De Pascale, Vignoli A., “A comparison of different spectra for nonliunear operators”, Nonlinear Anal. TMA, 40:1 (2000), 73–90 | DOI | MR | Zbl

[56] Appell J., Dorfner M., “Some spectral theory for nonlinear operators”, Nonlinear Anal. TMA, 28:12 (1997), 1955–1976 | DOI | MR | Zbl

[57] Arnold V. I., Arnold's Problems, Springer–Phasis, 2004, 639 pp. | MR

[58] Bailey P. B., “An eigenvalue theorem for nonlinear second order differential equations”, J. Math. Anal. Appl., 20 (1967), 94–102 | DOI | MR | Zbl

[59] Berestycki H., “On same Sturm–Liouville problems”, J. Differ. Equations, 26 (1977), 375–399 | DOI | MR

[60] Cosner Ch., “Bifurcations from higher eigenvalues”, Nonlinear Anal. TMA, 12:3 (1988), 271–277 | DOI | MR | Zbl

[61] Crendall M. G., Rabinowitz P. H., “Bifurcation from simple eigenvalue”, J. Funct. Anal., 8 (1977), 321–340 | DOI | MR

[62] Dancer E. N., “On the structure of solutions of nonlinear eigenvalue problem”, Indiana Univ. Math. J., 23:11 (1974), 1069–1076 | DOI | MR | Zbl

[63] Dymarskii Ya. M., “On quasi-linear representation of nonlinear strongly continuous operators”, Methods Funct. Anal. Topol., 8:3 (2002), 20–26 | MR | Zbl

[64] Dymarskii Ya. M., “Intersection namber and eigenvectors of quasilinear Hilbert–Schmidt operators”, Mat. fizika, analiz, geometriya, 9:4 (2002), 604–621 | MR | Zbl

[65] Dymarskii Ya. M., “On manyfolds of self-adjoint elliptic operators with multiple eigenvalues”, Methods Funct. Anal. Topol., 7:2 (2001), 68–74 | MR

[66] Fitzpatrick P., Pejsachowicz J., “Orientation and the Leray–Shauder theory for fully nonlinear elliptic boundary value problems”, Memoirs Amer. Math. Soc., 101, no. 483, 1993, 131 c | MR

[67] Friedlander L., “On the second eigenvalue of the Dirichlet Laplacian”, Izrael J. Math., 9 (1992), 23–32 | DOI | MR

[68] Fuĉik S., Neĉas J., Soĉuek V., Pectral analysis of nonlinear operators, Springer–Verlag, Berlin, Heidelberg, New York, 1973, 387 pp.

[69] Fujiwara D., Tanikawa M., Yukita Sh., “The spectrum of the Laplasian I”, Proc. Lap. Acad. Ser. A, 54:4 (1978), 87–91 | DOI | MR | Zbl

[70] Fulton W., Young tableaux, with Applications to Representation Theory and Geometry, Cambridge Univ. Press, 1997 | MR | Zbl

[71] Ize J. A., “Bifurcation theory for Fredholm operators”, Mem. Amer. Math. Soc., 7, no. 174, 1976, 128 pp. | MR

[72] Ince E. L., “A proof of the impossibility of the coexistence of two Mathieu functions”, Proc. Cambr. Phil. Soc., 21 (1922), 117–120 | Zbl

[73] Lions P. L., “The Choquard equation and related questions”, Nonlinear Anal. TMA, 4:6 (1980), 1063–1073 | DOI | MR

[74] Lupo D., Micheletti A. M., “On the persistence of the multiplicity of eigenvalues for some variational operator depending on the domain”, J. Math. Anal. and Appl., 193 (1995), 990–1002 | DOI | MR | Zbl

[75] Lupo D., Micheletti A. M., “On the persistence of the multiplicity of eigenvalues for some variational operator depending on the domain”, J. Math. Anal. Appl., 193 (1995), 990–1002 | DOI | MR | Zbl

[76] Lupo D., Micheletti A. M., “On the persistence of the multiplicity of eigenvalues for some variational operator depending on the domain”, J. Math. Anal. Appl., 193 (1995), 990–1002 | DOI | MR | Zbl

[77] Neuman F., “Linear differential equations of the second order and their application”, Rend. Mat. 3, Ser. 6, 4 (1971), 559–616 | MR

[78] Rabinowitz P. H., “Some global resuits for nonlinear eigenvalue problems”, J. Funct. Anal., 7 (1971), 487–513 | DOI | MR | Zbl

[79] Smale S., “An infinite dimensional version of Sard's theorem”, Amer. J. Math., 85 (1965), 861–866 | DOI | MR

[80] Tal A., “Eigenfunctions for a class a nonlinear differential equations”, J. Differ. Equations, 3 (1967), 112–134 | DOI | MR | Zbl

[81] Turner R. E. L., “Nonlinear eigenvalue problems with nonlocal operators”, Comm. Pure Appl. Math., 23:6 (1970), 963–972 | DOI | MR | Zbl

[82] Uhlenbeck K., “Generic properties of eigenfunctions”, Amer. J. Math., 98:4 (1976), 1059–1078. | DOI | MR | Zbl

[83] Whyburn G. T., Topological analysis, Chap. I, Princeton Univ. Press., Princeton, 1958, 119 pp. | MR | Zbl