Bundles and Geometric Structures Associated With Gyroscopic Systems
Contemporary Mathematics. Fundamental Directions, Geometry, Tome 22 (2007), pp. 100-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

The overview is devoted to topological and geometric structures associated with gyroscopic systems whose action functional $S$ is multivalued. The expediency of their constructing and studying is in particular stipulated by the fact that the standard methods of the calculus of variations in the problem with fixed endpoints are not effective for such functionals. One of the methods for overcoming the difficulties arising here is the application of bundles, foliations, connections, and also Riemannian and Lorentz manifolds. In this way, it turns out to be possible to perform the reduction of the two-point problem for $S$ to problems with fixed initial point and movable endpoint for the length functional ${\mathcal L}^*$ of a pseudo-Riemannian manifold foliated over the configurational space of the gyroscopic system considered. As the endpoint manifolds, the leaves of the Riemannian foliation are used, and the correspondence between the extremals of the functionals $S$ and ${\mathcal L}^*$ is stated by using the Ehresmann connection of this bundle. The paper discusses the results on the motions of natural mechanical systems with gyroscopic forces and gyroscopic systems of relativistic type obtained by using the above reduction and also the topological and geometric constructions used in it.
@article{CMFD_2007_22_a3,
     author = {E. I. Yakovlev},
     title = {Bundles and {Geometric} {Structures} {Associated} {With} {Gyroscopic} {Systems}},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {100--126},
     publisher = {mathdoc},
     volume = {22},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2007_22_a3/}
}
TY  - JOUR
AU  - E. I. Yakovlev
TI  - Bundles and Geometric Structures Associated With Gyroscopic Systems
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2007
SP  - 100
EP  - 126
VL  - 22
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2007_22_a3/
LA  - ru
ID  - CMFD_2007_22_a3
ER  - 
%0 Journal Article
%A E. I. Yakovlev
%T Bundles and Geometric Structures Associated With Gyroscopic Systems
%J Contemporary Mathematics. Fundamental Directions
%D 2007
%P 100-126
%V 22
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2007_22_a3/
%G ru
%F CMFD_2007_22_a3
E. I. Yakovlev. Bundles and Geometric Structures Associated With Gyroscopic Systems. Contemporary Mathematics. Fundamental Directions, Geometry, Tome 22 (2007), pp. 100-126. http://geodesic.mathdoc.fr/item/CMFD_2007_22_a3/

[1] Bim Dzh., Erlikh P., Globalnaya lorentseva geometriya, Mir, M., 1985 | MR

[2] Bolotin S. V., “Zamechanie o metode Rausa i gipoteze Gertsa”, Vestn. MGU, ser. mat.-mekh., 5 (1986), 51–53

[3] Bredon G., Vvedenie v teoriyu kompaktnykh grupp preobrazovanii, Nauka, M., 1980 | MR | Zbl

[4] Zhukova N. I., “Kriterii lokalnoi stabilnosti sloev rimanovykh sloenii s osobennostyami”, Izv. vuzov. Mat., 1992, no. 4, 88–91 | MR | Zbl

[5] Zaitsev A. V., Yakovlev E. I., “Krivizny mnogoobrazii tipa Kalutsy–Kleina s mnogomernoi strukturnoi gruppoi”, Noveishie problemy teorii polya, Izd-vo Regent', Kazan, 2001–2002

[6] Zaitsev A. V., “Nekotorye svyazi mezhdu geometriei i topologiei mnogoobrazii tipa Kalutsy–Kleina s mnogomernoi strukturnoi gruppoi”, Vestn. NNGU. Mat. model. optim. upravlenie, 1(25) (2002), 56–62, Izd-vo NNGU, N. Novgorod | MR

[7] Zaitsev A. V., “Vliyanie nepolozhitelnosti krivizn mnogoobrazii tipa Kalutsy–Kleina na ikh topologicheskie invarianty”, Vestn. NNGU. Ser. mat., 1 (2003), 11–17, Izd-vo NNGU, N. Novgorod

[8] Shapiro Ya. L., Yakovlev E. I., “Ob odnom prilozhenii geodezicheskogo modelirovaniya differentsialnykh uravnenii 2 poryadka”, Mat. zametki, 38:3 (1985), 429–439 | MR | Zbl

[9] Kozlov V. V., “Variatsionnoe ischislenie v tselom i klassicheskaya mekhanika”, Usp. mat. nauk, 40:2 (1885), 33–60

[10] Landau L. D., Lifshits E. M., Teoreticheskaya fizika. T. 2. Teoriya polya, Nauka, M., 1988 | MR

[11] Menskii M. B., Gruppa putei. Izmereniya. Polya. Chastitsy, Nauka, M., 1983 | MR

[12] Milnor Dzh., Teoriya Morsa, Mir, M., 1965 | MR

[13] Novikov I. D., Frolov V. P., Fizika chernykh dyr, Nauka, M., 1986

[14] Novikov S. P., “Mnogoznachnye funktsii i funktsionaly. Analog teorii Morsa”, Dokl. AN SSSR, 260:1 (1981), 31–34 | MR

[15] Novikov S. P., Shmeltser I., “Periodicheskie resheniya uravnenii Kirkhgofa svobodnogo dvizheniya tverdogo tela v idealnoi zhidkosti i rasshirennaya teoriya Lyusternika–Shnirelmana–Morsa (LShM)”, Funkts. anal. prilozh., 15:3 (1981), 54–66 | MR

[16] Novikov S. P., “Variatsionnye metody i periodicheskie resheniya uravnenii tipa Kirkhgofa”, Funkts. anal. prilozh., 15:4 (1981), 37–52 | MR

[17] Novikov S. P., “Gamiltonov formalizm i mnogoznachnyi analog teorii Morsa”, Usp. mat. nauk, 37:5 (1982), 3–49 | MR | Zbl

[18] Postnikov M. M., Vvedenie v teoriyu Morsa, Nauka, M., 1971 | MR

[19] Ryzhkova A. V., “Lokalno invariantnye rassloeniya s ploskimi svyaznostyami”, Noveishie problemy teorii polya, Izd-vo Regent', Kazan, 2001–2002, 409–416

[20] Ryzhkova A. V., “Pochti $\Delta$-rassloeniya nad dvumernymi mnogoobraziyami”, Vestn. NNGU. Ser. mat., 1 (2003), 61–69, Izd-vo NNGU, N. Novgorod

[21] Ryzhkova A. V., Yakovlev E. I., “Rassloeniya s konechnymi gruppami mnogoznachnykh avtomorfizmov i invariantnye svyaznosti”, Vestn. NNGU. Mat. model. optim. upravlenie, 1(25) (2002), 49–56, Izd-vo NNGU, N. Novgorod

[22] Ryzhkova A. V., Yakovlev E. I., “Invariantnye rassloeniya v kategorii pochti $\Delta$-rassloenii”, Vestn. NNGU. Ser. mat., 1(2) (2004), 148–158, Izd-vo NNGU, N. Novgorod

[23] Ryzhkova A. V., Yakovlev E. I., “Rassloeniya s gruppami mnogoznachnykh avtomorfizmov”, Mat. zametki, 77:4 (2005), 600–616 | MR | Zbl

[24] Serr Zh. P., “Singulyarnye gomologii rassloennykh prostranstv”, Rassloennye prostranstva i ikh prilozheniya, IL, M., 1958, 8–98

[25] Taimanov I. A., “Nesamoperesekayuschiesya zamknutye ekstremali mnogoznachnykh ili ne vsyudu polozhitelnykh funktsionalov”, Izv. AN SSSR. Mat., 55:2 (1991), 367–383 | MR | Zbl

[26] Taimanov I. A., “Zamknutye ekstremali na dvumernykh mnogoobraziyakh”, Usp. mat. nauk, 1992, no. 2, 143–185 | MR | Zbl

[27] Taimanov I. A., “Zamknutye nesamoperesekayuschiesya ekstremali mnogoznachnykh funktsionalov”, Sib. mat. zh., 33:4 (1992), 155–162 | MR

[28] Khyuzmoller D., Rassloennye prostranstva, Mir, M., 1970

[29] Khyshova O. V., Yakovlev E. I., “Krivizny Richchi mnogoobrazii tipa Kalutsy–Kleina”, Izv. vuzov. Mat., 2001, no. 4, 58–61 | MR | Zbl

[30] Chzhen Shen-Shen, Kompleksnye mnogoobraziya, Izd-vo IL, M., 1961

[31] Yakovlev E. I., “Dvukhkontsevaya zadacha dlya nekotorogo klassa mnogoznachnykh funktsionalov”, Funkts. anal. prilozh., 24:4 (1990), 63–73 | MR

[32] Yakovlev E. I., “Dvizheniya giroskopicheskikh sistem i lorentseva geometriya”, Izv. vuzov. Mat., 1992, no. 7, 78–86 | MR | Zbl

[33] Yakovlev E. I., “Geodezicheskoe modelirovanie i usloviya razreshimosti dvukhkontsevoi zadachi dlya mnogoznachnykh funktsionalov”, Funkts. anal. prilozh., 30:1 (1996), 89–92 | MR | Zbl

[34] Yakovlev E. I., “Dvukhtochechnye kraevye zadachi v relyativistskoi dinamike”, Mat. zametki, 59:3 (1996), 437–449 | MR | Zbl

[35] Yakovlev E. I., “O suschestvovanii reshenii dvukhtochechnykh kraevykh zadach dlya giroskopicheskikh sistem relyativistskogo tipa”, Algebra i analiz, 9:2 (1997), 256–271 | MR

[36] Yakovlev E. I., “Sektsionnye krivizny mnogoobrazii tipa Kalutsy–Kleina”, Izv. vuzov. Mat., 1997, no. 9, 75–82 | MR | Zbl

[37] Yakovlev E. I., “Pochti glavnye rassloeniya”, Mat. sb., 190:9 (1999), 151–176 | MR | Zbl

[38] Blumental R. A., Hebda J. J., “Ehresmann connections for foliations”, Indiana Univ. Math. J., 33 (1984), 597–611. | DOI | MR

[39] Kaluza T., “Zum Unitätsproblem der Physik”, S. B. Berlin Acad. Wiss., 1921, 966–972

[40] Klein O., “Quantentheorie und fünfdimensionale Relativitätstheorie”, Z. Physik, 37:12 (1926), 895–906 | DOI | Zbl

[41] Klein O., “Zur fünfdimensionalen Darstellung der Relativitätstheorie”, Z. Physik, 46:3–4 (1928), 188–208 | DOI

[42] Kobayashi S., “Principal fibre bundles with the 1-dimensional toroidal group”, Tôhoku Math. J., 8 (1956), 29–45 | DOI | MR | Zbl

[43] Kodaira K., Spenser D. S., “Groups of complex line bundles over compact Kähler manifolds”, Proc. Nat. Acad. Aci. USA, 39 (1953), 868–872 | DOI | MR | Zbl

[44] Reinhart B., “Foliated manifolds with bundle-like metric”, Ann. Math., 69 (1959), 119–132 | DOI | MR | Zbl