K\oe nigs type linearization models and asymptotic behavior of one-parameter semigroups
Contemporary Mathematics. Fundamental Directions, Proceedings of the Seminar on Differential and Functional Differential Equations supervised by A. L. Skubachevskii (Peoples' Friendship University of Russia), Tome 21 (2007), pp. 149-167

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study linear-fractional models for one-parameter semigroups of holomorphic mappings via Schröder's and Abel's functional equation. By using some limit schemes in the spirit of Kœnigs to solve those equation, we obtain new results on the asymptotic behavior of one-parameter semigroups having a boundary Denjoy–Wolff fixed point. In addition, we establish infinitisimal versions of the Burns-Krantz rigidity theorem for semigroups and their generators.
@article{CMFD_2007_21_a7,
     author = {D. Shoikhet},
     title = {K\oe nigs type linearization models and asymptotic behavior of one-parameter semigroups},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {149--167},
     publisher = {mathdoc},
     volume = {21},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2007_21_a7/}
}
TY  - JOUR
AU  - D. Shoikhet
TI  - K\oe nigs type linearization models and asymptotic behavior of one-parameter semigroups
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2007
SP  - 149
EP  - 167
VL  - 21
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2007_21_a7/
LA  - ru
ID  - CMFD_2007_21_a7
ER  - 
%0 Journal Article
%A D. Shoikhet
%T K\oe nigs type linearization models and asymptotic behavior of one-parameter semigroups
%J Contemporary Mathematics. Fundamental Directions
%D 2007
%P 149-167
%V 21
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2007_21_a7/
%G ru
%F CMFD_2007_21_a7
D. Shoikhet. K\oe nigs type linearization models and asymptotic behavior of one-parameter semigroups. Contemporary Mathematics. Fundamental Directions, Proceedings of the Seminar on Differential and Functional Differential Equations supervised by A. L. Skubachevskii (Peoples' Friendship University of Russia), Tome 21 (2007), pp. 149-167. http://geodesic.mathdoc.fr/item/CMFD_2007_21_a7/