On parabolic problems with non-Lipschitz nonlinearity
Contemporary Mathematics. Fundamental Directions, Proceedings of the Seminar on Differential and Functional Differential Equations supervised by A. L. Skubachevskii (Peoples' Friendship University of Russia), Tome 21 (2007), pp. 62-76

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider parabolic problems with non-Lipschitz nonlinearities in different scales of Banach spaces and prove local-in-time existence theorems. A new class of parabolic equations that have analytic solutions is obtained.
@article{CMFD_2007_21_a2,
     author = {O. \`E. Zubelevich},
     title = {On parabolic problems with {non-Lipschitz} nonlinearity},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {62--76},
     publisher = {mathdoc},
     volume = {21},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2007_21_a2/}
}
TY  - JOUR
AU  - O. È. Zubelevich
TI  - On parabolic problems with non-Lipschitz nonlinearity
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2007
SP  - 62
EP  - 76
VL  - 21
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2007_21_a2/
LA  - ru
ID  - CMFD_2007_21_a2
ER  - 
%0 Journal Article
%A O. È. Zubelevich
%T On parabolic problems with non-Lipschitz nonlinearity
%J Contemporary Mathematics. Fundamental Directions
%D 2007
%P 62-76
%V 21
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2007_21_a2/
%G ru
%F CMFD_2007_21_a2
O. È. Zubelevich. On parabolic problems with non-Lipschitz nonlinearity. Contemporary Mathematics. Fundamental Directions, Proceedings of the Seminar on Differential and Functional Differential Equations supervised by A. L. Skubachevskii (Peoples' Friendship University of Russia), Tome 21 (2007), pp. 62-76. http://geodesic.mathdoc.fr/item/CMFD_2007_21_a2/