On parabolic problems with non-Lipschitz nonlinearity
Contemporary Mathematics. Fundamental Directions, Proceedings of the Seminar on Differential and Functional Differential Equations supervised by A. L. Skubachevskii (Peoples' Friendship University of Russia), Tome 21 (2007), pp. 62-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider parabolic problems with non-Lipschitz nonlinearities in different scales of Banach spaces and prove local-in-time existence theorems. A new class of parabolic equations that have analytic solutions is obtained.
@article{CMFD_2007_21_a2,
     author = {O. \`E. Zubelevich},
     title = {On parabolic problems with {non-Lipschitz} nonlinearity},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {62--76},
     publisher = {mathdoc},
     volume = {21},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2007_21_a2/}
}
TY  - JOUR
AU  - O. È. Zubelevich
TI  - On parabolic problems with non-Lipschitz nonlinearity
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2007
SP  - 62
EP  - 76
VL  - 21
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2007_21_a2/
LA  - ru
ID  - CMFD_2007_21_a2
ER  - 
%0 Journal Article
%A O. È. Zubelevich
%T On parabolic problems with non-Lipschitz nonlinearity
%J Contemporary Mathematics. Fundamental Directions
%D 2007
%P 62-76
%V 21
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2007_21_a2/
%G ru
%F CMFD_2007_21_a2
O. È. Zubelevich. On parabolic problems with non-Lipschitz nonlinearity. Contemporary Mathematics. Fundamental Directions, Proceedings of the Seminar on Differential and Functional Differential Equations supervised by A. L. Skubachevskii (Peoples' Friendship University of Russia), Tome 21 (2007), pp. 62-76. http://geodesic.mathdoc.fr/item/CMFD_2007_21_a2/

[1] Godunov A. N., “Teorema Peano v banakhovykh prostranstvakh”, Funkts. analiz i ego prilozh., 9:1 (1974), 59–60 | MR

[2] Arrieta J. M., Carvalho A. N., “Abstract parabolic problems with critical nonlinearities and applications to Navier–Stokes and Heat equations”, Trans. Amer. Math. Soc., 352:1 (1999), 285–310 | DOI | MR

[3] Browder, “A new generalization of the Schauder fixed point theorem”, Math. Ann., 174 (1967), 285–290 | DOI | MR | Zbl

[4] Carvalho A. N., Cholewa J. W., Dlotko T., “Abstract parabolic problems in ordered banach spaces”, Colloq. Math., 90 (2001), 1–17 | DOI | MR | Zbl

[5] Diedonné J., “Deux exeples singuliers d'équations différentielles”, Acta. Sci. Math. (Szeged), 12 (1950), 38–40 | MR

[6] Folland G., Real analysis: modern techniques and their applications, 2nd ed., Wiley-Interscience, Chichester, 1999 | MR | Zbl

[7] Fujita H., Kato T., “On the Navier–Stokes initial value problem I”, Arch. Ration. Mech. Anal., 16 (1964), 269–315 | DOI | MR | Zbl

[8] Kato T., Fujita H., “On the nonstationary Navier–Stokes system”, Rend. Sem. Mat. Univ. Padova, 32 (1962), 243–260 | MR | Zbl

[9] Ohkitani K., Okamoto H., “Blow-up problems modeled from the strain-vorticity dynamics”, Proc. of the “Tosio Kato's Method and Principles for Evolution Equations in Mathematical Physics”, RIMS Kokyuroku, 1234, eds. Fujita H., Kuroda S. T., Okamoto H., 2001, 240–250 | MR

[10] Schwartz L., Analyse mathématique, Hermann, Paris, 1967 | Zbl

[11] Taylor M. E., Partial differential equations, Springer-Verlag, New York, 1996 | MR

[12] Yorke J., “A continuous differential equation in Hilbert space without existence”, Funkcial. Ekvac., 13 (1970), 19–21 | MR | Zbl

[13] Zubelevich O., “On some topological view on the abstract Cauchy—Kowalewski problem”, Complex Var. Theory Appl., 49:10 (2004), 703–709 | MR | Zbl