Hyperbolicity criterion for periodic solutions of functional-differential equations with several delays
Contemporary Mathematics. Fundamental Directions, Proceedings of the Seminar on Differential and Functional Differential Equations supervised by A. L. Skubachevskii (Peoples' Friendship University of Russia), Tome 21 (2007), pp. 37-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a hyperbolicity criterion for periodic solutions of nonlinear functional-differential equations is constructed in terms of zeros of the characteristic function. In the earlier papers in this area, necessary and sufficient conditions were different from each other. Moreover, it was assumed that if the period of the investigated solution is irrational, then that solution admits a rational approximation. In this paper, we obtain necessary and sufficient conditions of the hyperbolicity. It is proved (and the proof is constructive) that a rational approximation exists for any irrational period. All the results are obtained for the case of several rational delays.
@article{CMFD_2007_21_a1,
     author = {N. B. Zhuravlev},
     title = {Hyperbolicity criterion for periodic solutions of functional-differential equations with several delays},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {37--61},
     publisher = {mathdoc},
     volume = {21},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2007_21_a1/}
}
TY  - JOUR
AU  - N. B. Zhuravlev
TI  - Hyperbolicity criterion for periodic solutions of functional-differential equations with several delays
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2007
SP  - 37
EP  - 61
VL  - 21
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2007_21_a1/
LA  - ru
ID  - CMFD_2007_21_a1
ER  - 
%0 Journal Article
%A N. B. Zhuravlev
%T Hyperbolicity criterion for periodic solutions of functional-differential equations with several delays
%J Contemporary Mathematics. Fundamental Directions
%D 2007
%P 37-61
%V 21
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2007_21_a1/
%G ru
%F CMFD_2007_21_a1
N. B. Zhuravlev. Hyperbolicity criterion for periodic solutions of functional-differential equations with several delays. Contemporary Mathematics. Fundamental Directions, Proceedings of the Seminar on Differential and Functional Differential Equations supervised by A. L. Skubachevskii (Peoples' Friendship University of Russia), Tome 21 (2007), pp. 37-61. http://geodesic.mathdoc.fr/item/CMFD_2007_21_a1/

[4] Valter Kh.-O., Skubachevskii A. L., “O spektre operatora monodromii dlya medlenno ostsilliruyuschikh periodicheskikh reshenii funktsionalno-differentsialnykh uravnenii”, Dokl. AN, 384:4 (2002), 442–445 | MR | Zbl

[5] Valter Kh.-O., Skubachevskii A. L., “O multiplikatorakh Floke dlya medlenno ostsilliruyuschikh periodicheskikh reshenii nelineinykh funktsionalno-differentsialnykh uravnenii”, Tr. MMO, 64 (2003), 3–53 | MR

[6] Valter Kh.-O., Skubachevskii A. L., “O giperbolichnosti bystro ostsilliruyuschikh periodicheskikh reshenii funktsionalno-differentsialnykh uravnenii”, Funkts. analiz i ego prilozh., 39:1 (2005), 82–85 | MR | Zbl

[7] Valter Kh.-O., Skubachevskii A. L., “O giperbolichnosti reshenii s irratsionalnymi periodami nekotorykh funktsionalno-differentsialnykh uravnenii”, Dokl. AN, 402:2 (2005), 151–154 | MR

[8] Gokhberg I. Ts., Sigal E. I., “Operatornoe obobschenie teoremy o logarifmicheskom vychete i teoremy Rushe”, Mat. sbornik, 84:4 (1971), 607–629 | MR | Zbl

[9] Danford N., Shvarts Dzh. T., Lineinye operatory. Chast 1: Obschaya teoriya, URSS, M., 2004

[10] Dedonne Zh., Osnovy sovremennogo analiza, Mir, M., 1964

[11] Zhuravlev N. B., Skubachevskii A. L., “O giperbolichnosti periodicheskikh reshenii funktsionalno-differentsialnykh uravnenii s neskolkimi zapazdyvaniyami”, Dinamicheskie sistemy i optimizatsiya, Sbornik statei. K 70-letiyu so dnya rozhdeniya akademika Dmitriya Viktorovicha Anosova, Tr. MIAN, 256, 2007, 148–171 | MR | Zbl

[12] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972

[13] Krein S. G., Lineinye uravneniya v banakhovom prostranstve, Nauka, M., 1971

[14] Arino O., Chérif A., “More on ordinary differential equations which yield periodic solutions of differential delay equations”, J. Math. Anal. Appl., 180:2 (1993), 361–385 | DOI | MR | Zbl

[15] Chow S. N., Diekmann O., Mallet-Paret J., “Stability, multiplicity and global continuation of symmetric periodic solutions of a nonlinear Volterra integral equation”, Japan J. Indust. Appl. Math., 2 (1985), 433–469 | MR | Zbl

[16] Chow S. N., Walther H.-O., “Characteristic multipliers and stability of symmetric periodic solutions of $\dot x(t)=g(x(t-1))$”, Trans. Amer. Math. Soc., 307:1 (1988), 127–142 | DOI | MR | Zbl

[17] Diekmann O., van Gils S., Verduyn Lunel S. M., Walther H.-O., Delay Equations: Functional-, Complex-, and Nonlinear Analysis, Springer-Verlag, New York, 1995 | MR | Zbl

[18] Hale J. K., Verduyn Lunel S. M., Introduction to Functional Differential Equations, Springer, New York, 1993 | MR

[19] Kaplan J. L., Yorke J. A., “Ordinary differential equations which yield periodic solutions of delay differential equations”, J. Math. Anal. Appl., 48:1 (1974), 317–324 | DOI | MR | Zbl

[20] Mallet-Paret J., Sell G., “Systems of differential delay equations: Floquet multipliers and discrete Lyapunov functions”, J. Dynam. Differential Equations, 125 (1996), 385–440 | MR | Zbl

[21] Skubachevskii A. L., Walther H.-O., “On the Floquet multipliers of periodic solutions to nonlinear functional differential equations”, J. Dynam. Differential Equations, 18:2 (2006), 257–355 | DOI | MR | Zbl

[22] Walther H.-O., Hyperbolic periodic solutions, heteroclinic connections and transversal homoclinic points in autonomous differential delay equations, Mem. Amer. Math. Soc., 79, no. 402, 1989 | MR

[23] Xie X., “Uniqueness and stability of slowly oscillating periodic solutions of delay equations with unbounded nonlinearity”, J. Differential Equations, 103 (1993), 350–374 | DOI | MR | Zbl

[24] Zhuravlev N. B., “On the spectrum of the monodromy operator for slowly oscillating periodic solutions of functional differential equations with several delays”, Funct. Differ. Equ., 13:2 (2006), 323–344 | MR | Zbl