Recognition of Certain Properties of Automaton Algebras
Contemporary Mathematics. Fundamental Directions, Algebra, Tome 20 (2006), pp. 104-147.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers a new algebraic object, the completely automaton binomial algebras, which generalize certain existing classes of algebras. The author presents a classification of semigroup algebras taking into account completely automaton algebras and gives the corresponding examples. A number of standard algorithmic problems are solved for completely automaton binomial algebras: the recognition of a strict and non-strict polynomial property, the recognition of the right and/or left finite processing, and the construction of the determining regular language for an algebra with finite processing and for monomial subalgebras of a free associative algebra and certain completely automaton algebras. for an automaton monomial algebra, the author constructs the left syzygy module of a finite system of elements and the Gröbner basis of a finitely generated left ideal; also, some algorithmic problems are solved.
@article{CMFD_2006_20_a2,
     author = {S. A. Ilyasov},
     title = {Recognition of {Certain} {Properties} of {Automaton} {Algebras}},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {104--147},
     publisher = {mathdoc},
     volume = {20},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2006_20_a2/}
}
TY  - JOUR
AU  - S. A. Ilyasov
TI  - Recognition of Certain Properties of Automaton Algebras
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2006
SP  - 104
EP  - 147
VL  - 20
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2006_20_a2/
LA  - ru
ID  - CMFD_2006_20_a2
ER  - 
%0 Journal Article
%A S. A. Ilyasov
%T Recognition of Certain Properties of Automaton Algebras
%J Contemporary Mathematics. Fundamental Directions
%D 2006
%P 104-147
%V 20
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2006_20_a2/
%G ru
%F CMFD_2006_20_a2
S. A. Ilyasov. Recognition of Certain Properties of Automaton Algebras. Contemporary Mathematics. Fundamental Directions, Algebra, Tome 20 (2006), pp. 104-147. http://geodesic.mathdoc.fr/item/CMFD_2006_20_a2/

[1] Belov A. Ya., Lineinye rekurrentnye uravneniya, Int. Univ. of Bremen, Moscow Institute of Open Education, 2003

[2] Belov A. Ya., Borisenko V. V., Latyshev V. N., “Monomialnye algebry”, Itogi nauki i tekhn. Sovr. mat. i ee prilozh. Tematicheskie obzory, 26, 2002, 35–214

[3] Kasapenko L. Yu., O raspoznavaemykh svoistvakh assotsiativnykh algebr, Kand. dis., Ulyanovsk, 2000

[4] Latyshev V. N., Kombinatornaya teoriya kolets. Standartnye bazisy, Izd-vo MGU, M., 1988 | MR | Zbl

[5] Piontkovskii D. I., “Nekommutativnye bazisy Grebnera, kogerentnost assotsiativnykh algebr i delimost v polugruppakh”, Fundam. prikl. mat., 7:2 (2001), 495–513 | MR | Zbl

[6] Salomaa A., Zhemchuzhiny teorii formalnykh yazykov, Mir, M., 1986 | MR

[7] Umirbaev U. U., “Nekotorye algoritmicheskie voprosy assotsiativnykh algebr”, Algebra i logika, 32:4 (1993), 450–470 | MR | Zbl

[8] Becker T., Weispfenning V., Gröbner Bases, Springer-Verlag, Berlin, 1993 | MR

[9] Eisenbud D., Commutative algebra with a view toward algebraic geometry, Springer-Verlag, New York, 1995, 351–358 | MR

[10] Eisenbud D., Peeva I., Sturmfels B., “Non-commutative Gröbner bases for commutative algebras”, Proc. Amer. Math. Soc., 126:3 (1998), 687–690 | DOI | MR

[11] Månson J., Nordbeck P., “Regular Gröbner bases”, Symbol. Comput., 33 (2002), 163–181 | DOI | MR