Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2006_20_a1, author = {P. B. Zhdanovich}, title = {Free {Abelian} {Extensions} of $S_p${-Permutable} {Algebras}}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {69--103}, publisher = {mathdoc}, volume = {20}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2006_20_a1/} }
P. B. Zhdanovich. Free Abelian Extensions of $S_p$-Permutable Algebras. Contemporary Mathematics. Fundamental Directions, Algebra, Tome 20 (2006), pp. 69-103. http://geodesic.mathdoc.fr/item/CMFD_2006_20_a1/
[1] Artamonov V. A., “Predstavlenie Magnusa v kongruents-modulyarnykh mnogoobraziyakh”, Sib. mat. zh., 38:5 (1997), 978–995 | MR | Zbl
[2] Artamonov V. A., Chakrabarti S., “Svoistva algebr primarnogo poryadka s odnoi ternarnoi maltsevskoi operatsiei”, Algebra i logika, 34:2 (1995), 67–72 | MR | Zbl
[3] Danilov A. N., “Predstavlenie Magnusa dlya multioperatornykh grupp”, Chebyshevskii sb., 3:1 (2002), 35–40 | MR | Zbl
[4] Zhdanovich P. B., “Svobodnye abelevy rasshireniya $S_p$-perestanovochnykh algebr”, Chebyshevskii sb., 3:1 (3) (2002), 49–71 | MR | Zbl
[5] Zamyatin A. P., Mnogoobraziya s ogranicheniyami na reshetku kongruentsii, UrGU, Sverdlovsk, 1987 | MR
[6] Kon P., Universalnaya algebra, Mir, M., 1968 | MR
[7] Maltsev A. I., “K obschei teorii algebraicheskikh sistem”, Mat. sb., 35:1 (1954), 3–20 | MR
[8] Mikhalev A. A., Zolotykh A. A., “Endomorfizm svobodnoi algebry Li, sokhranyayuschii svoistvo primitivnosti elementov, yavlyaetsya avtomorfizmom”, Uspekhi mat. nauk, 48:6 (1993), 149–150 | MR | Zbl
[9] Obschaya algebra, t. 1, 2, ed. L. A. Skornyakov, Nauka, M., 1990, 1991
[10] Pinus A. G., Kongruents-modulyarnye mnogoobraziya, Izd-vo Irkutskogo un-ta, Irkutsk, 1986 | Zbl
[11] Umirbaev U. U., “Chastnye proizvodnye i endomorfizmy nekotorykh otnositelno svobodnykh algebr Li”, Sib. mat. zh., 34:6 (1993), 179–188 | MR | Zbl
[12] Umirbaev U. U., “Primitivnye elementy svobodnykh grupp”, Uspekhi mat. nauk, 49:2 (1994), 175–176 | MR | Zbl
[13] Umirbaev U. U., “O shreierovykh mnogoobraziyakh algebr”, Algebra i logika, 33:3 (1994), 317–340 | MR | Zbl
[14] Feis K., Algebra: koltsa, moduli i kategorii, Mir, M., 1977
[15] Chakrabarti S., “Gomomorfizmy svobodnykh razreshimykh algebr s odnoi ternarnoi maltsevskoi operatsiei”, Uspekhi mat. nauk, 48:3 (1993), 207–208 | MR | Zbl
[16] Artamonov V. A., Chakrabarti S., “Free solvable algebra in a general congruence modular variety”, Commun. Algebra, 24:5 (1996), 1723–1735 | DOI | MR | Zbl
[17] Artamonov V. A., Mikhalev A. A., Mikhalev A. V., “Combinatorial properties of free algebras of Schreier varieties”, Marcel Dekker Ser. Lect. Notes Pure Appl. Math., 235, 2003, 47–99 | MR | Zbl
[18] Bulatov A., “On the number of finite Mal'cev algebras”, Contributions to General Algebra 13, Proc. Dresden Conf. 2000 and the Summer School, 1999, Verlag Johannes Heyn, Klagenfurt, 2000
[19] Day A., “A characterization of modularity for congruence lattices of algebras”, Can. Math. Bull., 12 (1969), 167–173 | DOI | MR | Zbl
[20] Freese R., McKenzie R., Commutator theory for congruence modular varieties, London Math. Soc. Lect. Notes Ser., 125, 1987 | MR | Zbl
[21] Gilmer R., Commutative Semigroup Rings, Univ. of Chicago Press, Chicago, 1984 | MR | Zbl
[22] Hobby D., McKenzie R., The structure of finite algebras, Contemp. Math., 76, Amer. Math. Soc., 1988 | MR | Zbl
[23] Janelidze G., Marki L., Tholen W., “Semi-Abelian categories”, J. Pure Appl. Algebra, 168 (2002), 367–386 | DOI | MR | Zbl
[24] Jonsson B., “Algebras whose congruence lattices are distributive”, Math. Scand., 21 (1967), 110–121 | MR | Zbl
[25] Kilp M., Knauer U., Mikhalev A. V., Monoides, acts and categories with applications to wreath products and graphs, Walter de Gruyter, Berlin–New York, 2000 | MR | Zbl
[26] Mikhalev A. A., “Primitive elements and automorphisms of free algebras of Schreier varieties”, J. Math. Sci., 102:6 (2000), 4628–4640 | DOI | MR
[27] Mikhalev A. A., Umirbaev U. U., Yu J.-T., “Generic, almost primitive and test elements of free Lie algebras”, Proc. Amer. Math. Soc., 130 (2002), 1303–1310 | DOI | MR | Zbl
[28] Mikhalev A. A., Yu J.-T., “Primitive, almost primitive, test, and $\Delta$-primitive elements of free algebras with the Nielsen–Schreier property”, J. Algebra, 228 (2000), 603–623 | DOI | MR | Zbl
[29] Mikhalev A. A., Yu J.-T., “Automorphic orbits of elements of free algebras with the Nielsen–Schreier property”, Contemp. Math., 264 (2000), 95–110 | MR | Zbl
[30] Mikhalev A. A., Zolotykh A. A., “Automorphisms and primitive elements of free Lie superalgebras”, Commun. Algebra, 22 (1994), 5889–5901 | DOI | MR | Zbl
[31] Mikhalev A. A., Zolotykh A. A., “Applications of Fox differential calculus to free Lie superalgebras”, Non-Associative Algebra and Its Applications Dordrecht, Kluwer Academic Publ., 1994, 285–290 | MR | Zbl
[32] Mikhalev A. A., Zolotykh A. A., “Algorithms for primitive elements of free Lie algebras and superalgebras”, Proc. ISSAC-96, ACM Press, New York, 1996, 161–169 | MR | Zbl
[33] Mitchell B., “Rings with several objects”, Adv. Math., 8 (1972), 1–161 | DOI | MR | Zbl
[34] Pixley A. F., “Distributivity and permutability of congruence relations in equational classes of algebras”, Proc. Amer. Math. Soc., 14 (1963), 105–109 | DOI | MR | Zbl
[35] Rowan W., Abelian extensions of algebras in congruence modular varieties, arXiv:Math.RA/0005134v1
[36] Umirbaev U. U., “Universal derivations and subalgebras of free algebras”, Algebra (Krasnoyarsk, 1993), Walter de Gruyter, Berlin, 1996, 255–271 | MR | Zbl
[37] Vasconcelos W. V., “On Finitely generated modules”, Trans. Amer. Math. Soc., 138 (1966), 505–512 | DOI | MR
[38] Zhdanovich P., “Free Abelian extensions in the congruence-permutable varieties”, Discuss. Math. Gen. Algebra Appl., 22:2 (2002), 199–216 | MR | Zbl