Many-Dimensional Poincar\'e Construction and Singularities of Lifted Fields For Implicit Differential Equations
Contemporary Mathematics. Fundamental Directions, Optimal control, Tome 19 (2006), pp. 131-170.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to singular points of the so-called lifted vector fields, which arise in studying systems of implicit differential equations by using the method of lifting the equation to a surface, a generalization of the construction used by Poincaré for a single implicit equation. The author study the phase portraits and renormal forms of such fields in a neighborhood of their singular points. In conclusion, the paper considers the lifted vectors fields generated by Euler–Lagrange and Euler–Poisson equations and fast-slow systems.
@article{CMFD_2006_19_a5,
     author = {A. O. Remizov},
     title = {Many-Dimensional {Poincar\'e} {Construction} and {Singularities} of {Lifted} {Fields} {For} {Implicit} {Differential} {Equations}},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {131--170},
     publisher = {mathdoc},
     volume = {19},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2006_19_a5/}
}
TY  - JOUR
AU  - A. O. Remizov
TI  - Many-Dimensional Poincar\'e Construction and Singularities of Lifted Fields For Implicit Differential Equations
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2006
SP  - 131
EP  - 170
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2006_19_a5/
LA  - ru
ID  - CMFD_2006_19_a5
ER  - 
%0 Journal Article
%A A. O. Remizov
%T Many-Dimensional Poincar\'e Construction and Singularities of Lifted Fields For Implicit Differential Equations
%J Contemporary Mathematics. Fundamental Directions
%D 2006
%P 131-170
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2006_19_a5/
%G ru
%F CMFD_2006_19_a5
A. O. Remizov. Many-Dimensional Poincar\'e Construction and Singularities of Lifted Fields For Implicit Differential Equations. Contemporary Mathematics. Fundamental Directions, Optimal control, Tome 19 (2006), pp. 131-170. http://geodesic.mathdoc.fr/item/CMFD_2006_19_a5/

[1] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979 | MR

[2] Arnold V. I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978 | MR

[3] Arnold V. I., “Kontaktnaya struktura, relaksatsionnye kolebaniya i osobye tochki neyavnykh differentsialnykh uravnenii”, Izbrannoe, Fazis, M., 1997 | MR

[4] Arnold V. I., Geometricheskie metody v teorii obyknovennykh differentsialnykh uravnenii, Izd-vo Udmurtskogo gos. un-ta, Izhevsk, 2000

[5] Arnold V. I., Ilyashenko Yu. S., “Obyknovennye differentsialnye uravneniya”, Itogi nauki i tekhn. Sovr. probl. mat. Fundam. napravl., 1, VINITI, M., 1985, 7–149 | MR

[6] Arnold V. I., Afraimovich V. S., Ilyashenko Yu. S., Shilnikov L. P., “Teoriya bifurkatsii”, Itogi nauki i tekhn. Sovr. probl. mat. Fundam. napravl., 5, VINITI, M., 1986, 5–218 | MR

[7] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii. Klassifikatsii kriticheskikh tochek, kaustik i volnovykh frontov, Nauka, M., 1982 | MR

[8] Breker T., Lander L., Differentsiruemye rostki i katastrofy, Mir, M., 1977

[9] Bryuno A. D., Lokalnyi metod nelineinogo analiza differentsialnykh uravnenii, Nauka, M., 1979 | MR

[10] Davydov A. A., “Normalnaya forma uravneniya, ne razreshennogo otnositelno proizvodnoi, v okrestnosti ego osoboi tochki”, Funkts. anal. prilozh., 19:2 (1985), 1–10 | MR | Zbl

[11] Davydov A. A., Neyavnye differentsialnye uravneniya i kachestvennaya teoriya upravlyaemykh sistem na ploskosti, Diss. na soiskanie uchenoi stepeni dokt. f.-m. nauk, Mat. in-t im. V. A. Steklova RAN, Moskva, 1993

[12] Davydov A. A., Ortiz-Bobadilya L., “Normalnye formy slozhennykh elementarnykh osobykh tochek”, Usp. mat. nauk, 50:6(306) (1995), 175–177 | MR

[13] Davydov A. A., Rosales-Gonsales E., “Polnaya klassifikatsii tipichnykh lineinykh differentsialnykh uravnenii vtorogo poryadka s chastnymi proizvodnymi na ploskosti”, Dokl. RAN, 350:2 (1996), 151–154 | MR | Zbl

[14] Dirak P. A. M., Lektsii po kvantovoi mekhanike, Mir, M., 1968

[15] Klein F., Vysshaya geometriya, GONTI, M.-L., 1939

[16] Kuzmin A. G., “O povedenii kharakteristik uravneniya smeshannogo tipa vblizi linii vyrozhdeniya”, Differents. uravn., 17:11 (1981), 2052–2063 | MR

[17] Kuzmin A. G., Neklassicheskie uravneniya smeshannogo tipa i ikh prilozheniya k gazodinamike, Izd-vo LGU, L., 1990 | MR

[18] Kuzmin A. G., O kachestvennoi teorii uravneniya $a(x,y)(y')^2-2b(x,y)y'+c(x,y)=0$, Dep. v VINITI. Dep. 4143-81

[19] A. N. Kolmogorov i A. P. Yushkevich (red.), “Obyknovennye differentsialnye uravneniya”, Matematika XIX veka, Nauka, M., 1987 | MR

[20] Piliya A. D., Fedorov V. I., “Osobennosti polya elektromagnitnoi volny v kholodnoi anizotropnoi plazme s dvumernoi neodnorodnostyu”, ZhETF, 60:1 (1971), 389–399

[21] Puankare A., O krivykh, opredelyaemykh differentsialnymi uravneniyami, GITTL, M.-L., 1947

[22] Puankare A., Izbrannye trudy v trekh tomakh, T. 3, Nauka, M., 1971–1974 | MR

[23] Pkhakadze A. V., Shestakov A. A., “O klassifikatsii osobykh tochek differentsialnogo uravneniya pervogo poryadka, ne razreshennogo otnositelno proizvodnoi”, Mat. sb., 49(91):1 (1959), 3–12 | Zbl

[24] Rashevskii P. K., Kurs differentsialnoi geometrii, Gostekhizdat, M., 1956

[25] Samovol V. S., “Ekvivalentnost sistem differentsialnykh uravnenii v okrestnosti osoboi tochki”, Tr. Mosk. mat. ob-va, 44, 1982, 213–234 | MR | Zbl

[26] Smirnov M. M., Uravneniya smeshannogo tipa, Nauka, M., 1970 | MR

[27] Sokolov P. V., “K state A. V. Pkhakadze i A. A. Shestakova “O klassifikatsii osobykh tochek differentsialnogo uravneniya pervogo poryadka, ne razreshennogo otnositelno proizvodnoi””, Mat. sb., 53(95):4 (1961), 541–543 | Zbl

[28] Trikomi F., O lineinykh uravneniyakh smeshannogo tipa, Gostekhizdat, M.-L., 1947

[29] Filippov A. F., “Edinstvennost resheniya sistemy differentsialnykh uravnenii, ne razreshennykh otnositelno proizvodnykh”, Differents. uravn., 41:1 (2005), 87–92 | MR | Zbl

[30] Shoshitaishvili A. N., “O bifurkatsii topologicheskogo tipa osobykh tochek vektornykh polei, zavisyaschikh ot parametrov”, Tr. semin. im. I. G. Petrovskogo, 1, 1975, 279–309 | Zbl

[31] Abraham R., Marsden J. E., Ratiu M., Manifolds, Tensor Analysis, and Applications, Addison Wesley, Reading, Mass., 1983 | MR | Zbl

[32] Arnold V. I., “Wavefronts evolution and the equivariant Morse lemma”, Commun. Pure and Appl. Math., 29:6 (1976), 557–582 | DOI | MR

[33] Basto-Gonçalves J., “Singularities of Euler equations and implicit Hamilton equations”, Real and Complex Singularities, Pitman Research Notes Math., 333, Longman, 1995, 203–212 | MR | Zbl

[34] Berry M. V., Hannay J. H., “Umbilic points on Gaussian random surfaces”, J. Phys. A, 10 (1977), 1809–1821 | DOI

[35] Bruce J. W., “A note on first-order differential equations of degree greater than one and wavefront evolution”, Bull. London Math. Soc., 16 (1984), 139–144 | DOI | MR | Zbl

[36] Bruce J. W., Fidal D. L., “On binary differential equations and umbilics”, Proc. Royal Soc. Edinburgh Sect. A, 111 (1989), 147–168 | MR | Zbl

[37] Bruce J. W., Fletcher G. J., Tari F., “Bifurcations of binary differential equations”, Proc. Roy. Soc. Edinburgh Sect. A, 130 (2000), 485–506 | MR | Zbl

[38] Bruce J. W., Fletcher G. J., Tari F., “Zero curves of families of curve congruences”, Contemp. Math., 354 (2004), 1–18 | MR | Zbl

[39] Bruce J. W., Tari F., “On binary differential equations”, Nonlinearity, 8 (1995), 255–271 | DOI | MR | Zbl

[40] Bruce J. W., Tari F., “Implicit differential equations from the singularity theory viewpoint”, Singularities and differential equations (Warsaw, 1993), Banach Center Publ., 33, Polish Acad. Sci., Warszawa, 1996, 23–38 | MR | Zbl

[41] Bruce J. W., Tari F., “Generic 1-parameter families of binary differential equations”, Discr. Contin. Dynam. Systems, 3:1 (1997), 79–90 | MR | Zbl

[42] Bruce J. W., Tari F., “On the multiplicity of implicit differential equations”, J. Differ. Equations, 148 (1998), 122–147 | DOI | MR | Zbl

[43] Bruce J. W., Tari F., “Duality and implicit differential equations”, Nonlinearity, 13:3 (2000), 791–812 | DOI | MR

[44] Cariñena J. F., “Theory of singular Lagrangians”, Fortschrit. Phys., 38:9 (1990), 641–679 | DOI | MR

[45] Cibrario M., “Sulla reduzione a forma canonica delle equazioni lineari alle derivative parzialy di secondo ordine di tipo misto”, Rend. Lombardo, 65 (1932), 889–906 | Zbl

[46] Cinquini-Cibrario M., “Una propriete degli integrali delle equazioni ellitico-paraboliche del secondo tipo misto”, Reale Accad. D'Italia, Rendiconti Classe di Scienze, Fisiche, Mat. e Nat., ser. 7, 3:9 (1952) | MR | Zbl

[47] Clebsch A., Lindemann F., Vorlesungen über Geometrie, V. 1, 1876 | MR

[48] Clebsch A., “Über ein neues Grundgebilde der analytischen Geometrie der Ebene”, Nachr. Kgl. Ges. Wiss. Göttingen, 1872, 429–449; Reprinted in Math. Ann., 6 (1873), 203–225 | DOI | MR

[49] Dara L., “Singularités générique des équations différentielles multiformes”, Bol. Soc. Bras. Math., 6:2 (1975), 95–128 | DOI | MR | Zbl

[50] Darboux G., “Sur la forme des lignes de courbure dans la voisingage d'un ombilic”, Leçons sur la théorie générale des surfaces, IV, no. 7, Gauthier Villars, Paris, 1896

[51] Davydov A. A., Qualitative Theory of Control Systems, Translations of Mathematical Monographs, 141, Amer. Math. Soc., Providence, Rhode Island, 1994 | MR | Zbl

[52] Davydov A. A., Ishikawa G., Izumiya S., Sun W.-Z., Generic singularities of implicit systems of first order differential equations on the plane, arXiv: /math.DS/0302134 | MR

[53] Davydov A. A., Ortiz-Bobadilla L., “Smooth normal forms of folded elementary singular points”, J. Dynam. Control Systems, 1:4 (1995), 463–482 | DOI | MR | Zbl

[54] De León M., Marín-Solano J., Marrero J. C., Muñoz-Lecanda M. C., Román-Roy N., “Singular Lagrangian systems on jet bundles”, Fortschrit. Phys., 50:2 (2002), 105–169 ; arXiv: /math-ph/0105012 | 3.0.CO;2-N class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[55] Gràcia X., Muñoz-Lecanda M. C., Román-Roy N., “On some aspects of the geometry of differential equations in physics”, Int. J. Geom. Methods Mod. Phys., 1 (2004), 265–284 ; arXiv: /math-ph/0402030 | DOI | MR | Zbl

[56] Poincaré H., “Mémoire sur les courbes définies par les équations différentielles”, J. Math. Pures et Appl. Sér 4, 1 (1885), 167–244

[57] Porteous I. R., Geometric differentiation for the intelligence of curves and surfaces, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl

[58] Rabier P. J., Rheinboldt W. C., “A geometric treatment of implicit differential-algebraic equations”, J. Differ. Equations, 109 (1994), 110–146 | DOI | MR | Zbl

[59] Reich S., “On a geometrical interpretation of differential-algebraic equations”, Circuits Systems Signal Processing, 9 (1990), 367–382 | DOI | MR | Zbl

[60] Rheinboldt W. C., “Differential-algebraic systems as differential equations on manifolds”, Math. Comp., 43(168) (1984), 473–482 | DOI | MR | Zbl

[61] Sotomayor J., Historical comments on Monge's ellipsoid and the configuration of lines of curvature on surfaces immersed in $\mathbb R^3$, arXiv: /math.HO/0411403

[62] Struik D. J., Lectures on classical differential geometry, Addison Wesley, 1950 | MR | Zbl

[63] Takens F., “Constrained equations; a study of implicit differential equations and their discontinuous solutions”, Lect. Notes Math., 525, 1976, 143–234 | MR | Zbl

[64] Takens F., “Implicit differential equations: some open problems”, Lect. Notes Math., 535, 1976, 237–253 | MR | Zbl

[65] Tari F., “Two-parameter families of implicit differential equations”, Discr. Cont. Dynam. Systems., 13:1 (2005), 139–162 | DOI | MR | Zbl

[66] Tari F., “Geometric properties of the intergal curves of an implicit differential equations”, Discr. Cont. Dynam. Systems (to appear)