Accumulation of Switchings in Distributed Parameter Problems
Contemporary Mathematics. Fundamental Directions, Optimal control, Tome 19 (2006), pp. 78-113.

Voir la notice de l'article provenant de la source Math-Net.Ru

In recent tens, optimal control theory for distributed parameter systems is actively developed; among them, an important place is occupied by the class of systems describing oscillation processes. This work studies linear control distributed parameter systems of hyperbolic type. The minimization problem of a quadratic functional on the trajectories of the system is considered. By using the Fourier method, the problem is reduced to studying optimal solutions for a countable control system of ordinary differential equations. For Galerkin's approximations of this system, it is proved that the optimal control is a chattering control, i.e., it has infinitely many switchings on a finite interval of time. The construction of the optimal synthesis uses the results of the theory of singular regimes and regimes with with more and more frequent switchings.
@article{CMFD_2006_19_a3,
     author = {M. I. Zelikin and L. A. Manita},
     title = {Accumulation of {Switchings} in {Distributed} {Parameter} {Problems}},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {78--113},
     publisher = {mathdoc},
     volume = {19},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2006_19_a3/}
}
TY  - JOUR
AU  - M. I. Zelikin
AU  - L. A. Manita
TI  - Accumulation of Switchings in Distributed Parameter Problems
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2006
SP  - 78
EP  - 113
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2006_19_a3/
LA  - ru
ID  - CMFD_2006_19_a3
ER  - 
%0 Journal Article
%A M. I. Zelikin
%A L. A. Manita
%T Accumulation of Switchings in Distributed Parameter Problems
%J Contemporary Mathematics. Fundamental Directions
%D 2006
%P 78-113
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2006_19_a3/
%G ru
%F CMFD_2006_19_a3
M. I. Zelikin; L. A. Manita. Accumulation of Switchings in Distributed Parameter Problems. Contemporary Mathematics. Fundamental Directions, Optimal control, Tome 19 (2006), pp. 78-113. http://geodesic.mathdoc.fr/item/CMFD_2006_19_a3/

[1] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979 | MR

[2] Alfutov N. A., Osnovy rascheta na ustoichivost uprugikh sistem, Mashinostroenie, M., 1991

[3] Bogachev V. I., Osnovy teorii mery, T. 1, Regulyarnaya i khaoticheskaya dinamika, M., Izhevsk, 2003

[4] Boltyanskii V. G., Matematicheskie metody optimalnogo upravleniya, Nauka, M., 1969 | MR

[5] Borisov V. F., “Strukturnaya ustoichivost sinteza optimalnykh traektorii v dvumernoi zadache Fullera”, Vestn. MGU. Ser. mat., mekh., 4 (1987), 64–66 | MR | Zbl

[6] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1988 | MR

[7] Egorov Yu. V., Shubin M. A., Differentsialnye uravneniya s chastnymi proizvodnymi, Itogi nauki i tekhn. Sovr. problemy matematiki. Fundamentalnye napravleniya, 30, VINITI, M., 1988 | MR

[8] Zelikin M. I., Borisov V. F., “Rezhimy s uchaschayuschimisya pereklyucheniyami v zadache upravleniya robotom”, Prikl. mat. mekh., 52:6 (1988), 939–946 | MR | Zbl

[9] Zelikin M. I., Borisov V. F., “Rezhimy uchaschayuschikhsya pereklyuchenii v zadachakh optimalnogo upravleniya”, Tr. Mat. in-ta AN SSSR im. V. A. Steklova, 197, 1991, 85–166 | MR

[10] Zelikin M. I., Borisov V. F., “Sintez v zadachakh optimalnogo upravleniya, soderzhaschii traektorii s uchaschayuschimisya pereklyucheniyami i osobye traektorii vtorogo poryadka”, Mat. zametki, 47:1 (1990), 62–73 | MR

[11] Zelikin M. I., Borisov V. F., “Osobye optimalnye rezhimy v zadachakh matematicheskoi ekonomiki”, Sovr. mat. prilozh., 11 (2003), 3–161 | MR | Zbl

[12] Zelikin M. I., Zelikina L. F., “Uklonenie funktsionala ot optimalnogo znacheniya pri chetteringe eksponentsionalno ubyvaet s rostom chisla pereklyuchenii”, Diff .uravn., 35:11 (1999), 1468–1472 | MR | Zbl

[13] Zelikin M. I., Manita L. A., “Optimalnye rezhimy s uchaschayuschimisya pereklyucheniyami v zadache upravleniya balkoi Timoshenko”, Prikl. mat. mekh., 70:2 (2006), 295–304 | MR | Zbl

[14] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1989 | MR

[15] Manita L. A., Povedenie ekstremalei v zadachakh optimalnogo upravleniya v okrestnosti osobykh traektorii, Dep. v VINITI RAN 5.12.95. No 3217-V95

[16] Manita L. A., “Povedenie ekstremalei okrestnosti osobykh rezhimov i negladkie funktsii Lyapunova v zadachakh optimalnogo upravleniya”, Fundam. prikl. mat., 2:2 (1996), 411–447 | MR | Zbl

[17] Manita L. A., “Optimalnye rezhimy s uchaschayuschimisya pereklyucheniyami v zadachakh upravleniya manipulyatorami”, Prikl. mat. mekh., 64:1 (2000), 19–28 | MR | Zbl

[18] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1969

[19] Salobutina E. O., “Rezhimy nakopleniya pereklyuchenii v zadache odnovremennogo upravleniya kolebaniyami dvukh ostsillyatorov”, Vestn. MGU. Ser. mat., mekh., 3 (2006), 25–32 | MR

[20] Salobutina E. O., Rezhimy uchaschayuschikhsya pereklyuchenii v zadache optimalnogo upravleniya kolebaniyami $n$ ostsillyatorov

[21] Telesnin V. R., “Ob odnoi zadache optimizatsii perekhodnykh protsessov”, Tr. Mat. in-ta AN SSSR im. V. A. Steklova, 166, 1984, 235–244 | MR | Zbl

[22] Timoshenko S. P., Yang D. Kh., Uiver U., Kolebaniya v inzhenernom dele

[23] Timoshenko S. P., Kurs teorii uprugosti, Naukova dumka, Kiev, 1972

[24] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985 | MR

[25] Fursikov A. V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1999

[26] Shubin M. A., Lektsii ob uravneniyakh matematicheskoi fiziki, MTsNMO, M., 2003

[27] Agranovich M. S., “Elliptic boundary problems”, Encycl. Math. Sci., 79, Springer-Verlag | MR

[28] Kelley H. J., Kopp R. E., Moyer H. G., “Singular extremals”, Topics in Optimization, ed. G. Leitmann, Academic Press, N.Y., 1967, 63–103 | MR

[29] Gugat M., “Controllability of a slowly rotating Timoshenko beam”, ESAIM: Control, Optimisation and Calculus of Variations, 6 (2001), 333–360 | DOI | MR | Zbl

[30] Krabs W., Sklyar G. M., “On the controllability of a slowly rotating Timoshenko beam”, Z. Anal. Anwend., 18:2 (1999), 437–448 | MR | Zbl

[31] Krabs W., Sklyar G. M., “On the stabilizability of a slowly rotating Timoshenko beam”, Z. Anal. Anwend., 19:1 (2000), 131–145 | MR | Zbl

[32] Krabs W., Sklyar G. M., Wozniak J., “On the set of reachable states in the problem of controllability of rotating Timoshenko beams”, J. Anal. Appl., 22:1 (2003), 215–228 | MR | Zbl

[33] Taylor S., Yau S., “Boundary control of a rotating Timoshenko beam”, ANZIAM J. Ser. E, 44:1 (2003), 143–184

[34] Zelikin M. I., “One-parameter families of solutions to a class of PDE optimal control problems”, Contemp. Math., 209 (1997), 339–349 | MR | Zbl

[35] Zelikin M. I., “The Fuller phenomenon in problems of vibration of two linked oscillators”, J. Math. Sci., 78:5 (1996), 626–631 | DOI | MR | Zbl

[36] Zelikin M. I., Borisov V. F., Theory of chattering control with applications to astronautics, robotics, economics and engineering, Birkhäuser, Boston, 1994 | MR | Zbl