Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2006_17_a8, author = {P. Yang and J. Qing and S.-Yu. Chang}, title = {On the renormalized volumes for conformally compact {Einstein} manifolds}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {129--142}, publisher = {mathdoc}, volume = {17}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2006_17_a8/} }
TY - JOUR AU - P. Yang AU - J. Qing AU - S.-Yu. Chang TI - On the renormalized volumes for conformally compact Einstein manifolds JO - Contemporary Mathematics. Fundamental Directions PY - 2006 SP - 129 EP - 142 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2006_17_a8/ LA - ru ID - CMFD_2006_17_a8 ER -
P. Yang; J. Qing; S.-Yu. Chang. On the renormalized volumes for conformally compact Einstein manifolds. Contemporary Mathematics. Fundamental Directions, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 3, Tome 17 (2006), pp. 129-142. http://geodesic.mathdoc.fr/item/CMFD_2006_17_a8/
[1] Alexakis S., On the decomposition of global invariants I, Math. DG/0509571, Thesis, Princeton University, 2003
[2] Anderson M., “$L^2$ curvature and volume renormalization of the AHE metrics on 4-manifolds”, Math. Res. Lett., 8 (2001), 171–188 | MR | Zbl
[3] Branson T., “Functional determinant”, Lect. Notes Ser., 4, 1993, 13 | MR
[4] Chang S.-Y. A., Gursky M., Yang P., “An equation of Monge–Ampere type in conformal geometry and 4-manifolds of positive Ricci curvature”, Ann. of Math. (2), 155 (2002), 709–787 | DOI | MR | Zbl
[5] Chang S.-Y. A., Qing J., “The zeta functional determinants on manifolds with boundary. I: The formula”, J. Funct. Anal., 149:2 (1997), 327–362 | DOI | MR
[6] Chang S.-Y. A., Qing J., “On the topology of conformally compact Einstein 4-manifolds”, Contemp. Math., 350 (2004), 49–61 | MR | Zbl
[7] Epstein C., “The divisor of Selberg's Zeta functions for Kleinian groups”, Duke Math. J., 106:2 (2001), 321–390 | DOI | MR | Zbl
[8] Fefferman C., Graham C. R., “Conformal invariants”, The mathematical heritage of Élie Cartan, Astérisque, 1985, 95–116 | MR | Zbl
[9] Fefferman C., Graham C. R., “$Q$-curvature and Poincaré metrics”, Math. Res. Lett., 9:2–3 (2002), 139–151 | MR | Zbl
[10] Fefferman C., Hirachi K., “Ambient metric constuction of $Q$-curvature in conformal and CR geometry”, Math. Res. Lett., 10:5–6 (2003), 819–832 | MR
[11] Graham C. R., “Volume and area renormalizations for conformally compact Einstein metrics”, Geometry and Physics, Proc. $19$th Winter School (Srnì, 1999), Rend. Circ. Mat., Palermo, 2000, 31–42 | MR | Zbl
[12] Graham R., Jenne R., Mason L., Sparling J., “Conformally invariant powers of the Laplacian. I: Existence”, J. Lond. Math. Soc., 46 (1992), 557–565 | DOI | MR | Zbl
[13] Graham R., Lee L., “Einstein metrics with prescribed conformal infinity on the ball”, Adv. Math., 87:2 (1991), 186–225 | DOI | MR | Zbl
[14] Graham C. R., Zworski M., “Scattering matrix in conformal geometry”, Invent. Math., 152:1 (2003), 89–118 | DOI | MR | Zbl
[15] Henningson M., Skenderis K., “The holographic Weyl anomaly”, J. High Energy Phys., 1998, no. 7, 23 | DOI | MR | Zbl