On the renormalized volumes for conformally compact Einstein manifolds
Contemporary Mathematics. Fundamental Directions, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 3, Tome 17 (2006), pp. 129-142

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the renormalized volume of a conformally compact Einstein manifold. In even dimensions, we derive the analogue of the Chern–Gauss–Bonnet formula incorporating the renormalized volume. When the dimension is odd, we relate the renormalized volume to the conformal primitive of the $Q$-curvature.
@article{CMFD_2006_17_a8,
     author = {P. Yang and J. Qing and S.-Yu. Chang},
     title = {On the renormalized volumes for conformally compact {Einstein} manifolds},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {129--142},
     publisher = {mathdoc},
     volume = {17},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2006_17_a8/}
}
TY  - JOUR
AU  - P. Yang
AU  - J. Qing
AU  - S.-Yu. Chang
TI  - On the renormalized volumes for conformally compact Einstein manifolds
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2006
SP  - 129
EP  - 142
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2006_17_a8/
LA  - ru
ID  - CMFD_2006_17_a8
ER  - 
%0 Journal Article
%A P. Yang
%A J. Qing
%A S.-Yu. Chang
%T On the renormalized volumes for conformally compact Einstein manifolds
%J Contemporary Mathematics. Fundamental Directions
%D 2006
%P 129-142
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2006_17_a8/
%G ru
%F CMFD_2006_17_a8
P. Yang; J. Qing; S.-Yu. Chang. On the renormalized volumes for conformally compact Einstein manifolds. Contemporary Mathematics. Fundamental Directions, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 3, Tome 17 (2006), pp. 129-142. http://geodesic.mathdoc.fr/item/CMFD_2006_17_a8/