On the renormalized volumes for conformally compact Einstein manifolds
Contemporary Mathematics. Fundamental Directions, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 3, Tome 17 (2006), pp. 129-142.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the renormalized volume of a conformally compact Einstein manifold. In even dimensions, we derive the analogue of the Chern–Gauss–Bonnet formula incorporating the renormalized volume. When the dimension is odd, we relate the renormalized volume to the conformal primitive of the $Q$-curvature.
@article{CMFD_2006_17_a8,
     author = {P. Yang and J. Qing and S.-Yu. Chang},
     title = {On the renormalized volumes for conformally compact {Einstein} manifolds},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {129--142},
     publisher = {mathdoc},
     volume = {17},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2006_17_a8/}
}
TY  - JOUR
AU  - P. Yang
AU  - J. Qing
AU  - S.-Yu. Chang
TI  - On the renormalized volumes for conformally compact Einstein manifolds
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2006
SP  - 129
EP  - 142
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2006_17_a8/
LA  - ru
ID  - CMFD_2006_17_a8
ER  - 
%0 Journal Article
%A P. Yang
%A J. Qing
%A S.-Yu. Chang
%T On the renormalized volumes for conformally compact Einstein manifolds
%J Contemporary Mathematics. Fundamental Directions
%D 2006
%P 129-142
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2006_17_a8/
%G ru
%F CMFD_2006_17_a8
P. Yang; J. Qing; S.-Yu. Chang. On the renormalized volumes for conformally compact Einstein manifolds. Contemporary Mathematics. Fundamental Directions, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 3, Tome 17 (2006), pp. 129-142. http://geodesic.mathdoc.fr/item/CMFD_2006_17_a8/

[1] Alexakis S., On the decomposition of global invariants I, Math. DG/0509571, Thesis, Princeton University, 2003

[2] Anderson M., “$L^2$ curvature and volume renormalization of the AHE metrics on 4-manifolds”, Math. Res. Lett., 8 (2001), 171–188 | MR | Zbl

[3] Branson T., “Functional determinant”, Lect. Notes Ser., 4, 1993, 13 | MR

[4] Chang S.-Y. A., Gursky M., Yang P., “An equation of Monge–Ampere type in conformal geometry and 4-manifolds of positive Ricci curvature”, Ann. of Math. (2), 155 (2002), 709–787 | DOI | MR | Zbl

[5] Chang S.-Y. A., Qing J., “The zeta functional determinants on manifolds with boundary. I: The formula”, J. Funct. Anal., 149:2 (1997), 327–362 | DOI | MR

[6] Chang S.-Y. A., Qing J., “On the topology of conformally compact Einstein 4-manifolds”, Contemp. Math., 350 (2004), 49–61 | MR | Zbl

[7] Epstein C., “The divisor of Selberg's Zeta functions for Kleinian groups”, Duke Math. J., 106:2 (2001), 321–390 | DOI | MR | Zbl

[8] Fefferman C., Graham C. R., “Conformal invariants”, The mathematical heritage of Élie Cartan, Astérisque, 1985, 95–116 | MR | Zbl

[9] Fefferman C., Graham C. R., “$Q$-curvature and Poincaré metrics”, Math. Res. Lett., 9:2–3 (2002), 139–151 | MR | Zbl

[10] Fefferman C., Hirachi K., “Ambient metric constuction of $Q$-curvature in conformal and CR geometry”, Math. Res. Lett., 10:5–6 (2003), 819–832 | MR

[11] Graham C. R., “Volume and area renormalizations for conformally compact Einstein metrics”, Geometry and Physics, Proc. $19$th Winter School (Srnì, 1999), Rend. Circ. Mat., Palermo, 2000, 31–42 | MR | Zbl

[12] Graham R., Jenne R., Mason L., Sparling J., “Conformally invariant powers of the Laplacian. I: Existence”, J. Lond. Math. Soc., 46 (1992), 557–565 | DOI | MR | Zbl

[13] Graham R., Lee L., “Einstein metrics with prescribed conformal infinity on the ball”, Adv. Math., 87:2 (1991), 186–225 | DOI | MR | Zbl

[14] Graham C. R., Zworski M., “Scattering matrix in conformal geometry”, Invent. Math., 152:1 (2003), 89–118 | DOI | MR | Zbl

[15] Henningson M., Skenderis K., “The holographic Weyl anomaly”, J. High Energy Phys., 1998, no. 7, 23 | DOI | MR | Zbl