Voir la notice du chapitre de livre
@article{CMFD_2006_17_a4,
author = {K. P. Hadeler},
title = {Transport, reaction, and delay in mathematical biology, and the inverse problem for traveling fronts},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {57--77},
year = {2006},
volume = {17},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2006_17_a4/}
}
TY - JOUR AU - K. P. Hadeler TI - Transport, reaction, and delay in mathematical biology, and the inverse problem for traveling fronts JO - Contemporary Mathematics. Fundamental Directions PY - 2006 SP - 57 EP - 77 VL - 17 UR - http://geodesic.mathdoc.fr/item/CMFD_2006_17_a4/ LA - ru ID - CMFD_2006_17_a4 ER -
K. P. Hadeler. Transport, reaction, and delay in mathematical biology, and the inverse problem for traveling fronts. Contemporary Mathematics. Fundamental Directions, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 3, Tome 17 (2006), pp. 57-77. http://geodesic.mathdoc.fr/item/CMFD_2006_17_a4/
[1] Bocharov G., Hadeler K. P., “Structured population models, conservation laws, and delay equations”, J. Differential Equations, 168 (2000), 212–237 | DOI | MR | Zbl
[2] Brailovsky I., Sivashinsky G. I., “On deflagration-to-detonation transition”, Comb. Sci. and Tech., 130 (1997), 201–230 | DOI
[3] Brezis H., Kamin S., Sivashinsky G., “Initiation of subsonic detonation”, Asymptot. Anal., 24 (2000), 73–90 | MR | Zbl
[4] Dkhil F., Hadeler K. P., “Travelling fronts in pressure-driven combustion”, SIAM J. Appl. Math., 66 (2006), 1473–1481 | DOI | MR | Zbl
[5] Hadeler K. P., “Travelling fronts and free boundary value problems”, Numerical treatment of free boundary value problems (Workshop, Oberwolfach, 1980), 1982, 90–107 | Zbl
[6] Hadeler K. P., “Reaction telegraph equations and random walk systems”, Stochastic and spatial structures of dynamical systems, North-Holland, Amsterdam, 1996, 133–161 | MR | Zbl
[7] Hadeler K. P., “Nonlinear propagation in reaction transport systems”, Fields Inst. Commun., 21 (1999), 251–257 | MR | Zbl
[8] Hadeler K. P., “Reaction transport systems in biological modelling”, Lecture Notes in Math., 1714, 1999, 95–150 | MR | Zbl
[9] Hadeler K. P., “The role of migration and contact distribution in epidemic spread”, Frontiers Appl. Math., 28 (2003), 199–210 | MR
[10] Hadeler K. P., “Quiescent phases and stability” (to appear)
[11] Hadeler K. P., Coexistence of two species on a common gradient, Gotovitsya k pechati
[12] Hadeler K. P., Bocharov G., “Delays in population models and where to put them, in particular in the neutral case”, Canad. Appl. Math. Quart., 11 (2003), 159–173 | MR | Zbl
[13] Hadeler K. P., Bocharov G., Quasilinear neutral delay equations, Gotovitsya k pechati
[14] Hadeler K. P., Hillen T., “Coupled dynamics and quiescent phases”, Proc. of the Conference on Deterministic and Stochastic Modelling in Biomedicine, Economy, and Industry (Milano, 2005) (to appear)
[15] Hadeler K. P., Hillen T., Lutscher F., “The Langevin or Kramers approach to biological modeling”, Math. Models Methods Appl. Sci., 14 (2004), 1561–1583 | DOI | MR | Zbl
[16] Hadeler K. P., Lewis M. A., “Spatial dynamics of the diffusive logistic equation with a sedentary compartment”, Canad. Appl. Math. Quart., 10 (2002), 473–499 | MR | Zbl
[17] Hadeler K. P., Rothe F., “Travelling fronts in nonlinear diffusion equations”, J. Math. Biol., 2 (1975), 251–263 | DOI | MR | Zbl
[18] Hale J. K., Lunel S. M. V., Introduction to functional differential equations, Springer, New York, 1993 | MR
[19] Hess P., “Periodic-parabolic boundary value problems and positivity”, Pitman Research Notes in Math., 247 (1996)
[20] Hillen T., Hadeler K. P., “Hyperbolic systems and transport equations in Mathematical Biology”, Analysis and numerics for conservation laws, Springer, Berlin, 2005, 257–279 | MR | Zbl
[21] Hofbauer J., So J. W.-H., “Diagonal dominance and harmless off-diagonal delays”, Proc. Amer. Math. Soc., 128 (2000), 2675–2682 | DOI | MR | Zbl
[22] Mimura M., Kawasaki K., “Spatial segregation in competitive interaction-diffusion equations”, J. Math. Biol., 9 (1980), 49–64 | DOI | MR | Zbl
[23] Sánchez-Garduño F., Maini P. K., “Travelling wave phenomena in some degenerate reaction-diffusion equations”, J. Differential Equations, 117 (1995), 281–319 | DOI | MR | Zbl
[24] Schumacher K., “Travelling-front solutions for integro-differential equations. I”, J. Reine Angew. Math., 316 (1980), 54–70 | DOI | MR | Zbl
[25] Schwetlick H., “Travelling fronts for multidimensional nonlinear transport equations”, Ann. Inst. H. Poincaré Anal. Non Lineaire, 17 (2000), 523–550 | DOI | MR | Zbl
[26] Tang T., Othmer H. G., “A $G$ protein-based model of adaptation in Dictyostelium discoideum”, Math. Biosci., 120 (1994), 25–76 | DOI | Zbl
[27] Weinberger H. F., Lewis M. A., Li B., “Analysis of linear determinacy for spread in cooperative models”, J. Math. Biol., 45 (2002), 183–218 | DOI | MR | Zbl