Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2006_17_a4, author = {K. P. Hadeler}, title = {Transport, reaction, and delay in mathematical biology, and the inverse problem for traveling fronts}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {57--77}, publisher = {mathdoc}, volume = {17}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2006_17_a4/} }
TY - JOUR AU - K. P. Hadeler TI - Transport, reaction, and delay in mathematical biology, and the inverse problem for traveling fronts JO - Contemporary Mathematics. Fundamental Directions PY - 2006 SP - 57 EP - 77 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2006_17_a4/ LA - ru ID - CMFD_2006_17_a4 ER -
%0 Journal Article %A K. P. Hadeler %T Transport, reaction, and delay in mathematical biology, and the inverse problem for traveling fronts %J Contemporary Mathematics. Fundamental Directions %D 2006 %P 57-77 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2006_17_a4/ %G ru %F CMFD_2006_17_a4
K. P. Hadeler. Transport, reaction, and delay in mathematical biology, and the inverse problem for traveling fronts. Contemporary Mathematics. Fundamental Directions, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 3, Tome 17 (2006), pp. 57-77. http://geodesic.mathdoc.fr/item/CMFD_2006_17_a4/
[1] Bocharov G., Hadeler K. P., “Structured population models, conservation laws, and delay equations”, J. Differential Equations, 168 (2000), 212–237 | DOI | MR | Zbl
[2] Brailovsky I., Sivashinsky G. I., “On deflagration-to-detonation transition”, Comb. Sci. and Tech., 130 (1997), 201–230 | DOI
[3] Brezis H., Kamin S., Sivashinsky G., “Initiation of subsonic detonation”, Asymptot. Anal., 24 (2000), 73–90 | MR | Zbl
[4] Dkhil F., Hadeler K. P., “Travelling fronts in pressure-driven combustion”, SIAM J. Appl. Math., 66 (2006), 1473–1481 | DOI | MR | Zbl
[5] Hadeler K. P., “Travelling fronts and free boundary value problems”, Numerical treatment of free boundary value problems (Workshop, Oberwolfach, 1980), 1982, 90–107 | Zbl
[6] Hadeler K. P., “Reaction telegraph equations and random walk systems”, Stochastic and spatial structures of dynamical systems, North-Holland, Amsterdam, 1996, 133–161 | MR | Zbl
[7] Hadeler K. P., “Nonlinear propagation in reaction transport systems”, Fields Inst. Commun., 21 (1999), 251–257 | MR | Zbl
[8] Hadeler K. P., “Reaction transport systems in biological modelling”, Lecture Notes in Math., 1714, 1999, 95–150 | MR | Zbl
[9] Hadeler K. P., “The role of migration and contact distribution in epidemic spread”, Frontiers Appl. Math., 28 (2003), 199–210 | MR
[10] Hadeler K. P., “Quiescent phases and stability” (to appear)
[11] Hadeler K. P., Coexistence of two species on a common gradient, Gotovitsya k pechati
[12] Hadeler K. P., Bocharov G., “Delays in population models and where to put them, in particular in the neutral case”, Canad. Appl. Math. Quart., 11 (2003), 159–173 | MR | Zbl
[13] Hadeler K. P., Bocharov G., Quasilinear neutral delay equations, Gotovitsya k pechati
[14] Hadeler K. P., Hillen T., “Coupled dynamics and quiescent phases”, Proc. of the Conference on Deterministic and Stochastic Modelling in Biomedicine, Economy, and Industry (Milano, 2005) (to appear)
[15] Hadeler K. P., Hillen T., Lutscher F., “The Langevin or Kramers approach to biological modeling”, Math. Models Methods Appl. Sci., 14 (2004), 1561–1583 | DOI | MR | Zbl
[16] Hadeler K. P., Lewis M. A., “Spatial dynamics of the diffusive logistic equation with a sedentary compartment”, Canad. Appl. Math. Quart., 10 (2002), 473–499 | MR | Zbl
[17] Hadeler K. P., Rothe F., “Travelling fronts in nonlinear diffusion equations”, J. Math. Biol., 2 (1975), 251–263 | DOI | MR | Zbl
[18] Hale J. K., Lunel S. M. V., Introduction to functional differential equations, Springer, New York, 1993 | MR
[19] Hess P., “Periodic-parabolic boundary value problems and positivity”, Pitman Research Notes in Math., 247 (1996)
[20] Hillen T., Hadeler K. P., “Hyperbolic systems and transport equations in Mathematical Biology”, Analysis and numerics for conservation laws, Springer, Berlin, 2005, 257–279 | MR | Zbl
[21] Hofbauer J., So J. W.-H., “Diagonal dominance and harmless off-diagonal delays”, Proc. Amer. Math. Soc., 128 (2000), 2675–2682 | DOI | MR | Zbl
[22] Mimura M., Kawasaki K., “Spatial segregation in competitive interaction-diffusion equations”, J. Math. Biol., 9 (1980), 49–64 | DOI | MR | Zbl
[23] Sánchez-Garduño F., Maini P. K., “Travelling wave phenomena in some degenerate reaction-diffusion equations”, J. Differential Equations, 117 (1995), 281–319 | DOI | MR | Zbl
[24] Schumacher K., “Travelling-front solutions for integro-differential equations. I”, J. Reine Angew. Math., 316 (1980), 54–70 | DOI | MR | Zbl
[25] Schwetlick H., “Travelling fronts for multidimensional nonlinear transport equations”, Ann. Inst. H. Poincaré Anal. Non Lineaire, 17 (2000), 523–550 | DOI | MR | Zbl
[26] Tang T., Othmer H. G., “A $G$ protein-based model of adaptation in Dictyostelium discoideum”, Math. Biosci., 120 (1994), 25–76 | DOI | Zbl
[27] Weinberger H. F., Lewis M. A., Li B., “Analysis of linear determinacy for spread in cooperative models”, J. Math. Biol., 45 (2002), 183–218 | DOI | MR | Zbl