The exterior Plateau problem in higher codimension
Contemporary Mathematics. Fundamental Directions, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 3, Tome 17 (2006), pp. 44-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove existence theorems for two-dimensional noncompact complete minimal surfaces in $\mathbb R^n$ of annular type, which span a given contour and have a finite total curvature end and prescribed asymptotical behavior. For arbitrary rectifiable Jordan curves, we show the existence of such surfaces with a flat end, i.e., within bounded distance from a 2-plane. For more restricted classes of curves, we prove the existence of minimal surfaces with higher multiplicity flat ends as well as of surfaces with polynomial-type nonflat ends.
@article{CMFD_2006_17_a3,
     author = {F. Tomi and L. P. Jorge},
     title = {The exterior {Plateau} problem in higher codimension},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {44--56},
     publisher = {mathdoc},
     volume = {17},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2006_17_a3/}
}
TY  - JOUR
AU  - F. Tomi
AU  - L. P. Jorge
TI  - The exterior Plateau problem in higher codimension
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2006
SP  - 44
EP  - 56
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2006_17_a3/
LA  - ru
ID  - CMFD_2006_17_a3
ER  - 
%0 Journal Article
%A F. Tomi
%A L. P. Jorge
%T The exterior Plateau problem in higher codimension
%J Contemporary Mathematics. Fundamental Directions
%D 2006
%P 44-56
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2006_17_a3/
%G ru
%F CMFD_2006_17_a3
F. Tomi; L. P. Jorge. The exterior Plateau problem in higher codimension. Contemporary Mathematics. Fundamental Directions, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 3, Tome 17 (2006), pp. 44-56. http://geodesic.mathdoc.fr/item/CMFD_2006_17_a3/

[1] Courant R., Dirichlet's principle, conformal mapping, and minimal surfaces, Springer, New York, Heidelberg, Berlin, 1977 | MR | Zbl

[2] Dierkes U., Hildebrandt S., Küster A., Wohlrab O., Minimal surfaces I, II, Springer, Berlin, Heidelberg, New York, 1992 | MR

[3] Douglas J., “The problem of Plateau for two contours”, J. Math. Phys., Mass. Inst. Techn., 10 (1931), 315–359 | Zbl

[4] Ekholm T., White B., Wienholtz D., “Embeddedness of minimal surfaces with total boundary curvature at most $4\pi$”, Ann. Math. (2), 155 (2002), 209–234 | DOI | MR | Zbl

[5] Hoffmann D. A., Osserman R., The geometry of the generalized Gauss map, Mem. Amer. Math. Soc., 28, no. 236, 1980 | MR | Zbl

[6] Jorge P. L., Meeks W. H., “The topology of complete minimal surfaces of finite total Gaussian curvature”, Topology, 22 (1983), 203–221 | DOI | MR | Zbl

[7] Jorge P. L., Tomi F., “The barrier principle for minimal submanifolds of arbitrary codimension”, Ann. Global Anal. Geom., 24 (2003), 261–267 | DOI | MR | Zbl

[8] Morgan F., “On the singular structure of two-dimensional area minimizing surfaces in $\mathbb{R}^n$”, Math. Ann., 261 (1982), 101–110 | DOI | MR | Zbl

[9] Tomi F., Tromba A. J., Existence theorems for minimal surfaces of nonzero genus spanning a contour, Mem. Am. Math. Soc., 71, no. 382, 1988 | MR | Zbl

[10] Tomi F., Ye R., “The exterior Plateau problem”, Math. Z., 205 (1990), 233–245 | DOI | MR | Zbl