The exterior Plateau problem in higher codimension
Contemporary Mathematics. Fundamental Directions, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 3, Tome 17 (2006), pp. 44-56

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove existence theorems for two-dimensional noncompact complete minimal surfaces in $\mathbb R^n$ of annular type, which span a given contour and have a finite total curvature end and prescribed asymptotical behavior. For arbitrary rectifiable Jordan curves, we show the existence of such surfaces with a flat end, i.e., within bounded distance from a 2-plane. For more restricted classes of curves, we prove the existence of minimal surfaces with higher multiplicity flat ends as well as of surfaces with polynomial-type nonflat ends.
@article{CMFD_2006_17_a3,
     author = {F. Tomi and L. P. Jorge},
     title = {The exterior {Plateau} problem in higher codimension},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {44--56},
     publisher = {mathdoc},
     volume = {17},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2006_17_a3/}
}
TY  - JOUR
AU  - F. Tomi
AU  - L. P. Jorge
TI  - The exterior Plateau problem in higher codimension
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2006
SP  - 44
EP  - 56
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2006_17_a3/
LA  - ru
ID  - CMFD_2006_17_a3
ER  - 
%0 Journal Article
%A F. Tomi
%A L. P. Jorge
%T The exterior Plateau problem in higher codimension
%J Contemporary Mathematics. Fundamental Directions
%D 2006
%P 44-56
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2006_17_a3/
%G ru
%F CMFD_2006_17_a3
F. Tomi; L. P. Jorge. The exterior Plateau problem in higher codimension. Contemporary Mathematics. Fundamental Directions, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 3, Tome 17 (2006), pp. 44-56. http://geodesic.mathdoc.fr/item/CMFD_2006_17_a3/