Nonlinear and linear instability of the Rossby--Haurwitz wave
Contemporary Mathematics. Fundamental Directions, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 3, Tome 17 (2006), pp. 11-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

The dynamics of perturbations to the Rossby–Haurwitz (RH) wave is analytically analyzed. These waves, being of great meteorological importance, are exact solutions to the nonlinear vorticity equation describing the motion of an ideal incompressible fluid on a rotating sphere. Each RH wave belongs to a space $H_1\oplus H_n$, where $H_n$ is the subspace of homogeneous spherical polynomials of degree $n$. It is shown that any perturbation of the RH wave evolves in such a way that its energy $K(t)$ and enstrophy $\eta(t)$ decrease, remain constant, or increase simultaneously. A geometric interpretation of variations in the perturbation energy is given. A conservation law for arbitrary perturbations is obtained and used to classify all the RH-wave perturbations in four invariant sets $M_{-}^n$, $M_{+}^n$, $H_n$, and $M_0^n-H_n$, depending on the value of their mean spectral number $\chi(t)=\eta(t)/K(t)$. The energy cascade of growing (or decaying) perturbations has opposite directions in the sets $M_{-}^n$ and $M_{+}^n$ due to a hyperbolic dependence between $K(t)$ and $\chi(t)$. A factor space with a factor norm of the perturbations is introduced, using the invariant subspace $H_n$ of neutral perturbations as the zero factor class. While the energy norm controls the perturbation part belonging to $H_n$, the factor norm controls the perturbation part orthogonal to $H_n$. It is shown that in the set $M_{-}^n$ ($\chi(t)$), any nonzonal RH wave of subspace $H_1\oplus H_n$ ($n\ge 2$) is Liapunov unstable in the energy norm. This instability has nothing in common with the orbital (Poincaré) instability and is caused by asynchronous oscillations of two almost coinciding RH-wave solutions. It is also shown that the exponential instability is possible only in the invariant set $M_{0}^n-H_n$. A necessary condition for this instability is given. The condition states that the spectral number $\chi(t)$ of the amplitude of each unstable mode must be equal to $n(n+1)$, where $n$ is the RH wave degree. The growth rate is estimated and the orthogonality of the unstable normal modes to the RH wave are shown in two Hilbert spaces. The instability in the invariant set $M_{+}^n$ of small-scale perturbations ($\chi(t)>n(n+1)$) is still an open problem.
@article{CMFD_2006_17_a1,
     author = {Yu. N. Skiba},
     title = {Nonlinear and linear instability of the {Rossby--Haurwitz} wave},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {11--28},
     publisher = {mathdoc},
     volume = {17},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2006_17_a1/}
}
TY  - JOUR
AU  - Yu. N. Skiba
TI  - Nonlinear and linear instability of the Rossby--Haurwitz wave
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2006
SP  - 11
EP  - 28
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2006_17_a1/
LA  - ru
ID  - CMFD_2006_17_a1
ER  - 
%0 Journal Article
%A Yu. N. Skiba
%T Nonlinear and linear instability of the Rossby--Haurwitz wave
%J Contemporary Mathematics. Fundamental Directions
%D 2006
%P 11-28
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2006_17_a1/
%G ru
%F CMFD_2006_17_a1
Yu. N. Skiba. Nonlinear and linear instability of the Rossby--Haurwitz wave. Contemporary Mathematics. Fundamental Directions, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 3, Tome 17 (2006), pp. 11-28. http://geodesic.mathdoc.fr/item/CMFD_2006_17_a1/

[1] Gadzhiev A. D., “O differentsialnykh svoistvakh simvola mnogomernogo singulyarnogo integralnogo operatora”, Matem. sb., 114 (1981), 483–510 | MR | Zbl

[2] Dikii L. A., Gidrodinamicheskaya ustoichivost i atmosfernaya dinamika, Gidrometeoizdat, Leningrad, 1976

[3] Karunin A. B., “O volnakh Rossbi v barotropnoi atmosfere pri nalichii zonalnykh potokov”, Izv. AN SSSR, ser. fiziki atmosfery i okeana, 6 (1970), 1091–1100 | MR

[4] Skiba Yu. N., “Neustoichivost po Lyapunovu voln Rossbi—Gaurvitsa i dipolnykh modonov”, Sov. zhurn. chislennogo analiza i matem. modelirovaniya, 6 (1991), 515–534 | MR

[5] Skiba Yu. N., “Ob ustoichivosti volny Rossbi—Gaurvitsa”, Izv. AN SSSR, ser. fiziki atmosfery i okeana, 28 (1992), 512–521

[6] Shutyaev V. P., “Vyborka dannykh v shkale prostranstv Gilberta dlya kvazilineinykh evolyutsionnykh zadach”, Diff. uravn., 34 (1998), 382–388 | MR | Zbl

[7] Anderson J. L., “The instability of finite amplitude Rossby waves on the infinite plane”, Geophys. Astrophys. Fluid Dynam., 63 (1992), 1–27 | DOI

[8] Andronov A. A., Vitt A. A., Khaikin S. E., Theory of oscillators, Dover Publications, Inc., New York, 1987 | MR

[9] Baines P. G., “The stability of planetary waves on a sphere”, J. Fluid Mech., 73 (1976), 193–213 | DOI | MR | Zbl

[10] Crommelin D. T., “Regime transitions and heteroclinic connections in a barotropic atmosphere”, J. Atmospheric Sci., 60 (2003), 229–246 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[11] Fjörtoft R., “On the changes in the spectral distribution of the kinetic energy for two-dimensional nondivergent flow”, Tellus, 5 (1953), 225–230 | DOI | MR

[12] Gill A. E., “The stability of planetary waves on an infinite beta plane”, Geophys. Astrophys. Fluid Dynam., 6 (1974), 29–47 | DOI | MR

[13] Haarsma R. S., Opsteegh J. D., “Barotropic instability of planetary-scale flows”, J. Atmospheric Sci., 45 (1988), 2789–2810 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[14] Haurwitz B., “The motion of atmospheric disturbances on the spherical earth”, J. Marine Research, 3 (1940), 254–267

[15] Helgason S., Groups and geometric analysis, integral geometry, invariant differential operators and spherical functions, Academic Press, Orlando, 1984 | MR | Zbl

[16] Hoskins B. J., “Stability of the Rossby–Haurwitz wave”, Quart. J. R. Met. Soc., 99 (1973), 723–745 | DOI

[17] Hoskins B. J., Hollingsworth A., “On the simplest example of the barotropic instability of Rossby wave motion”, J. Atmospheric Sci., 30 (1973), 150–153 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[18] Kuo H. L., “Dynamic instability of two-dimensional nondivergent flow in a barotropic atmosphere”, J. Meteor., 6 (1949), 105–122 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[19] Liapunov A. M., Stability of motion, Academic Press, New York, 1966 | MR

[20] Lorenz E. N., “Barotropic instability of Rossby wave motion”, J. Atmospheric Sci., 29 (1972), 258–264 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[21] Machenhauer B., Numerical methods used in atmospheric models, V. 2, GARP Publication Series, 17, 1977

[22] Petroni R., Pierini S., Vulpiani A., “The double cascade as a necessary mechanism for the instability of steady equivalent-barotropic flows”, Nuovo Cimento C, 10 (1972), 27–36 | DOI | MR

[23] Petroni R., Pierini S., Vulpiani A., “Reply to a note by T. G. Shepherd”, Nuovo Cimento C, 12 (1989), 271–275 | DOI

[24] Platzman G. W., “The analytical dynamics of the spectral vorticity equation”, J. Atmospheric Sci., 19 (1962), 313–328 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[25] Rayleigh L., “On the stability or instability of certain fluid motions”, Proc. London Math. Soc., 11 (1880), 57–70 | DOI

[26] Richtmyer R. D., Principles of advanced mathematical physics, V. 2, Springer–Verlag, New York, 1981 | MR | Zbl

[27] Riley K. F., Hobson M. P., Bence S. J., Mathematical methods for physics and engineering, Cambridge University Press, Cambridge, 1998

[28] Ripa P., “Positive, negative and zero wave energy and the flow stability problem in the Eulerian and Lagrangian–Eulerian descriptions”, Pure Appl. Geophysics, 133 (1990), 713–732 | DOI

[29] La Salle J., Lefschetz S., Stability by Liapunov's direct method, Academic Press, New York, 1961 | MR | Zbl

[30] Shepherd T. G., “Remarks concerning the double cascade as a necessary mechanism for the instability of steady equivalent-barotropic flows”, Nuovo Cimento C, 11 (1988), 439–442 | DOI

[31] Shepherd T. G., “Symmetries, conservation laws, and Hamiltonian structure in geophysical fluid dynamics”, Adv. Geophysics, 32 (1990), 287–338 | DOI

[32] Shutyaev V. P., “Solvability of the data assimilation problem in the scale of Hilbert spaces for quasilinear singularly perturbed evolutionary problems”, Russian J. Numer. Anal. Math. Modelling, 12 (1997), 53–66 | DOI | MR | Zbl

[33] Shutyaev V. P., “Initial condition reconstruction problem for a viscous barotropic fluid dynamic equation on a sphere”, Russian J. Numer. Anal. Math. Modelling, 17 (2002), 457–468 | MR | Zbl

[34] Simmons A. J., Wallace J. M., Branstator G. W., “Barotropic wave propagation and instability, and atmospheric teleconnection patterns”, J. Atmospheric Sci., 40 (1983), 1363–1392 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[35] Skiba Yu. N., Mathematical problems of the dynamics of viscous barotropic fluid on a rotating sphere, Indian Inst. Tropical Meteorology, Pune, 1990

[36] Skiba Yu. N., “Dynamics of perturbations of the Rossby–Haurwitz wave and the Verkley modon”, Atmósfera, 6 (1993), 87–125

[37] Skiba Yu. N., “Spectral approximation in the numerical stability study of non-divergent viscous flows on a sphere”, Numer. Methods for Partial Differential Equations, 14 (1998), 143–157 | 3.0.CO;2-O class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[38] Skiba Yu. N., “On the normal mode instability of harmonic waves on a sphere”, Geophys. Astrophys. Fluid Dynam., 92 (2000), 115–127 | DOI | MR

[39] Skiba Yu. N., “On the spectral problem in the linear stability study of flows on a sphere”, J. Math. Anal. Appl., 270 (2002), 165–180 | DOI | MR | Zbl

[40] Skiba Yu. N., Adem J., “On the linear stability study of zonal incompressible flows on a sphere”, Numer. Methods for Partial Differential Equations, 14 (1998), 649–665 | 3.0.CO;2-I class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[41] Skiba Yu. N., Strelkov A. Y., “Spectral structure of growing normal modes for exact solutions to barotropic vorticity equation on a sphere”, Computational fluid dynamics, World Scientific Publ., Singapore, USA, 2001, 129–139 | MR | Zbl

[42] Subbiah M., Padmini M., “Note on the nonlinear stability of equivalent barotropic flows”, Indian J. Pure Appl. Math., 30 (1999), 1261–1272 | MR | Zbl

[43] Szeptycki P., “Equations of hydrodynamics on manifold diffeomorfic to the sphere”, Bull. L'acad. Pol. Sci., Ser. Sci. Math., Astr., Phys., 21 (1973), 341–344 | MR | Zbl

[44] Verhulst F., Nonlinear differential equations and dynamical systems, Springer, Berlin, 1996 | MR | Zbl

[45] Wolansky G., Ghil M., “Nonlinear stability for saddle solutions of ideal flows and symmetry breaking”, Comm. Math. Phys., 193 (1998), 713–736 | DOI | MR | Zbl

[46] Zubov V. I., Methods of A. M. Liapunov and their application, Noordhoff, Groningen, 1964 | MR | Zbl