A priori properties of solutions of nonlinear equations with degenerate coercivity and $L^1$-data
Contemporary Mathematics. Fundamental Directions, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 2, Tome 16 (2006), pp. 47-67

Voir la notice de l'article provenant de la source Math-Net.Ru

A Dirichlet problem for a second-order nonlinear elliptic equation in the general divergent form with a right-hand side from $L^1$ is considered. The high-order coefficients in the equation are supposed to satisfy the degenerate coercivity condition. The main results concern a priori properties of summability and some estimates of entropy solutions of this problem.
@article{CMFD_2006_16_a4,
     author = {A. A. Kovalevsky},
     title = {A priori properties of solutions of nonlinear equations with degenerate coercivity and $L^1$-data},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {47--67},
     publisher = {mathdoc},
     volume = {16},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2006_16_a4/}
}
TY  - JOUR
AU  - A. A. Kovalevsky
TI  - A priori properties of solutions of nonlinear equations with degenerate coercivity and $L^1$-data
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2006
SP  - 47
EP  - 67
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2006_16_a4/
LA  - ru
ID  - CMFD_2006_16_a4
ER  - 
%0 Journal Article
%A A. A. Kovalevsky
%T A priori properties of solutions of nonlinear equations with degenerate coercivity and $L^1$-data
%J Contemporary Mathematics. Fundamental Directions
%D 2006
%P 47-67
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2006_16_a4/
%G ru
%F CMFD_2006_16_a4
A. A. Kovalevsky. A priori properties of solutions of nonlinear equations with degenerate coercivity and $L^1$-data. Contemporary Mathematics. Fundamental Directions, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 2, Tome 16 (2006), pp. 47-67. http://geodesic.mathdoc.fr/item/CMFD_2006_16_a4/