On topological properties of manifolds of eigenfunctions generated by a~family of periodic Sturm--Liouville problems
Contemporary Mathematics. Fundamental Directions, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 2, Tome 16 (2006), pp. 22-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we study manifolds of eigenfunctions of a fixed oscillation. Then, solving the trivial inverse problem of reconstruction of a potential by an eigenfunction, we describe the properties of manifolds of potentials. The approach proposed allows one to link topological properties of manifolds of eigenfunctions with those of manifolds of potentials.
@article{CMFD_2006_16_a2,
     author = {Ya. M. Dymarskii},
     title = {On topological properties of manifolds of eigenfunctions generated by a~family of periodic {Sturm--Liouville} problems},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {22--37},
     publisher = {mathdoc},
     volume = {16},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2006_16_a2/}
}
TY  - JOUR
AU  - Ya. M. Dymarskii
TI  - On topological properties of manifolds of eigenfunctions generated by a~family of periodic Sturm--Liouville problems
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2006
SP  - 22
EP  - 37
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2006_16_a2/
LA  - ru
ID  - CMFD_2006_16_a2
ER  - 
%0 Journal Article
%A Ya. M. Dymarskii
%T On topological properties of manifolds of eigenfunctions generated by a~family of periodic Sturm--Liouville problems
%J Contemporary Mathematics. Fundamental Directions
%D 2006
%P 22-37
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2006_16_a2/
%G ru
%F CMFD_2006_16_a2
Ya. M. Dymarskii. On topological properties of manifolds of eigenfunctions generated by a~family of periodic Sturm--Liouville problems. Contemporary Mathematics. Fundamental Directions, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 2, Tome 16 (2006), pp. 22-37. http://geodesic.mathdoc.fr/item/CMFD_2006_16_a2/

[1] Arnold V. I., “Mody i kvazimody”, Funkts. analiz i ego prilozh., 6:2 (1972), 12–20 | MR | Zbl

[2] Arnold V. I., “Zamechaniya o sobstvennykh chislakh i vektorakh ermitovykh matrits, faze Berri, adiabaticheskikh svyaznostyakh i kvantovom effekte Kholla”, Izbrannoe, Fazis, M., 1998, 583–604

[3] Dymarskii Ya. M., “O mnogoobraziyakh sobstvennykh funktsii i potentsialov, porozhdennykh semeistvom periodicheskikh kraevykh zadach”, Ukrainskii matem. zh., 48:6 (1996), 771–781 | MR | Zbl

[4] Dymarskii Ya. M., “Mnogoobraziyakh sobstvennykh funktsii i potentsialov semeistva periodicheskikh zadach Shturma–Liuvillya”, Ukrainskii matem. zh., 54:8 (2002), 1042–1052 | MR | Zbl

[5] Landau L. D., Lifshits E. M., Teoreticheskaya fizika Kvantovaya mekhanika. Nerelyativistskaya teoriya, T. 3, Nauka, M., 1974 | MR

[6] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. Analiz operatorov, 4, Mir, M., 1982 | MR

[7] Rurginon Zh. P., “Uravnenie Shturma–Liuvillya, u kotorogo vse resheniya periodicheskie”, v kn.: Besse A., Mnogoobraziya s zamknutymi geodezicheskimi, Mir, M., 1981, 290–305

[8] Dymarskii Ya. M., “On manyfolds of self-adjoint elliptic operators with multiple eigenvalues”, Methods Funct. Anal. Topology, 7:2 (2001), 68–74 | MR

[9] Neuman F., “Linear differential equations of the second order and their application”, Rend. Mat. 3, 4:6 (1971), 559–616 | MR

[10] Uhlenbeck K., “Generic properties of eigenfunctions”, Amer. J. Math., 98:4 (1976), 1059–1078 | DOI | MR | Zbl