Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2006_16_a2, author = {Ya. M. Dymarskii}, title = {On topological properties of manifolds of eigenfunctions generated by a~family of periodic {Sturm--Liouville} problems}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {22--37}, publisher = {mathdoc}, volume = {16}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2006_16_a2/} }
TY - JOUR AU - Ya. M. Dymarskii TI - On topological properties of manifolds of eigenfunctions generated by a~family of periodic Sturm--Liouville problems JO - Contemporary Mathematics. Fundamental Directions PY - 2006 SP - 22 EP - 37 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2006_16_a2/ LA - ru ID - CMFD_2006_16_a2 ER -
%0 Journal Article %A Ya. M. Dymarskii %T On topological properties of manifolds of eigenfunctions generated by a~family of periodic Sturm--Liouville problems %J Contemporary Mathematics. Fundamental Directions %D 2006 %P 22-37 %V 16 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2006_16_a2/ %G ru %F CMFD_2006_16_a2
Ya. M. Dymarskii. On topological properties of manifolds of eigenfunctions generated by a~family of periodic Sturm--Liouville problems. Contemporary Mathematics. Fundamental Directions, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 2, Tome 16 (2006), pp. 22-37. http://geodesic.mathdoc.fr/item/CMFD_2006_16_a2/
[1] Arnold V. I., “Mody i kvazimody”, Funkts. analiz i ego prilozh., 6:2 (1972), 12–20 | MR | Zbl
[2] Arnold V. I., “Zamechaniya o sobstvennykh chislakh i vektorakh ermitovykh matrits, faze Berri, adiabaticheskikh svyaznostyakh i kvantovom effekte Kholla”, Izbrannoe, Fazis, M., 1998, 583–604
[3] Dymarskii Ya. M., “O mnogoobraziyakh sobstvennykh funktsii i potentsialov, porozhdennykh semeistvom periodicheskikh kraevykh zadach”, Ukrainskii matem. zh., 48:6 (1996), 771–781 | MR | Zbl
[4] Dymarskii Ya. M., “Mnogoobraziyakh sobstvennykh funktsii i potentsialov semeistva periodicheskikh zadach Shturma–Liuvillya”, Ukrainskii matem. zh., 54:8 (2002), 1042–1052 | MR | Zbl
[5] Landau L. D., Lifshits E. M., Teoreticheskaya fizika Kvantovaya mekhanika. Nerelyativistskaya teoriya, T. 3, Nauka, M., 1974 | MR
[6] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. Analiz operatorov, 4, Mir, M., 1982 | MR
[7] Rurginon Zh. P., “Uravnenie Shturma–Liuvillya, u kotorogo vse resheniya periodicheskie”, v kn.: Besse A., Mnogoobraziya s zamknutymi geodezicheskimi, Mir, M., 1981, 290–305
[8] Dymarskii Ya. M., “On manyfolds of self-adjoint elliptic operators with multiple eigenvalues”, Methods Funct. Anal. Topology, 7:2 (2001), 68–74 | MR
[9] Neuman F., “Linear differential equations of the second order and their application”, Rend. Mat. 3, 4:6 (1971), 559–616 | MR
[10] Uhlenbeck K., “Generic properties of eigenfunctions”, Amer. J. Math., 98:4 (1976), 1059–1078 | DOI | MR | Zbl