On the solvability of a~singular boundary-value problem for the equation $f(t,x,x',x'')=0$
Contemporary Mathematics. Fundamental Directions, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 2, Tome 16 (2006), pp. 10-21

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we consider boundary value problems of the form \begin{gather*} f(t,x,x',x'')=0,\quad 01,\\ x(0)=0,\quad x'(1)=b,\quad b>0, \end{gather*} where the the scalar function $f(t,x,p,q)$ may be singular at $x=0$. As far as we know, the solvability of the singular boundary value problems of this form has not been treated yet. Here we try to fill in this gap. Examples, illustrating our main result, are included.
@article{CMFD_2006_16_a1,
     author = {M. K. Grammatikopulos and P. S. Kelevedzhiev and N. I. Popivanov},
     title = {On the solvability of a~singular boundary-value problem for the equation $f(t,x,x',x'')=0$},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {10--21},
     publisher = {mathdoc},
     volume = {16},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2006_16_a1/}
}
TY  - JOUR
AU  - M. K. Grammatikopulos
AU  - P. S. Kelevedzhiev
AU  - N. I. Popivanov
TI  - On the solvability of a~singular boundary-value problem for the equation $f(t,x,x',x'')=0$
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2006
SP  - 10
EP  - 21
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2006_16_a1/
LA  - ru
ID  - CMFD_2006_16_a1
ER  - 
%0 Journal Article
%A M. K. Grammatikopulos
%A P. S. Kelevedzhiev
%A N. I. Popivanov
%T On the solvability of a~singular boundary-value problem for the equation $f(t,x,x',x'')=0$
%J Contemporary Mathematics. Fundamental Directions
%D 2006
%P 10-21
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2006_16_a1/
%G ru
%F CMFD_2006_16_a1
M. K. Grammatikopulos; P. S. Kelevedzhiev; N. I. Popivanov. On the solvability of a~singular boundary-value problem for the equation $f(t,x,x',x'')=0$. Contemporary Mathematics. Fundamental Directions, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 2, Tome 16 (2006), pp. 10-21. http://geodesic.mathdoc.fr/item/CMFD_2006_16_a1/