Spectral Stability of Nonnegative Self-Adjoint Operators
Contemporary Mathematics. Fundamental Directions, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 1, Tome 15 (2006), pp. 76-111.

Voir la notice de l'article provenant de la source Math-Net.Ru

The survey is devoted to spectral stability problems for uniformly elliptic differential operators under the variation of the domain and to the accompanying estimates for the difference of the eigenvalues. Two approaches to the problem are discussed in detail. In the first one it is assumed that the domain is transformed by means of a transformation of a certain class and spectral stability with respect to this transformation is investigated. The second approach is based on the notion of a transition operator and allows direct comparison of the eigenvalues on domains which are close in that or other sense.
@article{CMFD_2006_15_a6,
     author = {V. I. Burenkov and P. D. Lamberti and M. Lanza de Cristoforis},
     title = {Spectral {Stability} of {Nonnegative} {Self-Adjoint} {Operators}},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {76--111},
     publisher = {mathdoc},
     volume = {15},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2006_15_a6/}
}
TY  - JOUR
AU  - V. I. Burenkov
AU  - P. D. Lamberti
AU  - M. Lanza de Cristoforis
TI  - Spectral Stability of Nonnegative Self-Adjoint Operators
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2006
SP  - 76
EP  - 111
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2006_15_a6/
LA  - ru
ID  - CMFD_2006_15_a6
ER  - 
%0 Journal Article
%A V. I. Burenkov
%A P. D. Lamberti
%A M. Lanza de Cristoforis
%T Spectral Stability of Nonnegative Self-Adjoint Operators
%J Contemporary Mathematics. Fundamental Directions
%D 2006
%P 76-111
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2006_15_a6/
%G ru
%F CMFD_2006_15_a6
V. I. Burenkov; P. D. Lamberti; M. Lanza de Cristoforis. Spectral Stability of Nonnegative Self-Adjoint Operators. Contemporary Mathematics. Fundamental Directions, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 1, Tome 15 (2006), pp. 76-111. http://geodesic.mathdoc.fr/item/CMFD_2006_15_a6/

[1] Arnold V. I., “Mody i kvazimody”, Funktsionalnyi analiz i ego prilozheniya, 6 (1972), 12–20

[2] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, Fizmatlit, M., 1996 | MR

[3] Burenkov V. I., “Priblizhenie funktsii iz prostranstv $W_p^r(\Omega)$ finitnymi funktsiyami dlya proizvolnogo otkrytogo mnozhestva $\Omega$”, Trudy MIAN, 131, 1974, 51–63 | MR | Zbl

[4] Burenkov V. I., Lamberti P. D., “Spektralnaya ustoichivost neotritsatelnykh samosopryazhennykh operatorov”, Dokl. AN, 403:2 (2005), 159–164 | MR | Zbl

[5] Ilin V. A., Shishmarev I. A., “Ravnomernye otsenki na zamknutoi oblasti sobstvennykh funktsii ellipticheskogo operatora i ikh proizvodnykh”, Izv. AN SSSR, ser. mat., 24 (1960), 883–896 | MR

[6] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[7] Kurant R., Gilbert D., Metody matematicheskoi fiziki, T. I, GTTI, M., L., 1933

[8] Slobodetskii L. N., “Teoriya potentsiala dlya parabolicheskikh uravnenii”, Dokl. AN, 103 (1955), 19–22 | Zbl

[9] Smolitskii Kh. L., “Otsenki proizvodnykh fundamentalnykh funktsii”, Dokl. AN, 74 (1950), 205–208

[10] Eidus D. M., “Otsenki modulei sobstvennykh funktsii”, Dokl. AN, 90 (1953), 973–974 | MR

[11] Eidus D. M., “Nekotorye neravenstva dlya sobstvennykh funktsii”, Dokl. AN, 107 (1956), 796–798 | MR

[12] Yakubov V. Ya., “Tochnye otsenki dlya $L^2$-normalizovannykh sobstvennykh funktsii ellipticheskogo operatora”, Dokl. AN, 331(3) (1993), 286–287 | Zbl

[13] Ancona A., “On strong barriers and an inequality on Hardy for domains in ${\mathbb{R}}^n$”, J. London Math. Soc., 34 (1986), 274–290 | DOI | MR | Zbl

[14] Babyŝhka I., “Ustoichivost' oblasti opredeleniya po otnosheniyu $k$ osnovnym zadacham teorii differentsial'nykh uravnenii”, Chekhoslovatskii Mat. Zh., 11:86 (1961), 76–105; 165–203

[15] Babuŝka I., Výborný R., “Continuous dependence of eigenvalues on the domain”, Chekhoslovatskii Mat. Zh., 15:90 (1965), 169–178 | MR | Zbl

[16] Brezis H., Marcus M., “Hardy's inequalities revisited”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25 (1998), 217–237 | MR

[17] Burenkov V. I., Sobolev spaces on domains, B. G. Teubner, Stuttgart, Leipzig, 1998 | MR | Zbl

[18] Burenkov V. I., Davies E. B., “Spectral stability of the Neumann Laplacian”, J. Differential Equations, 186 (2002), 485–508 | DOI | MR | Zbl

[19] Burenkov V. I., Lamberti P. D., “Spectral stability of general nonnegative self-adjoint operators with applications to Neumann-type operators” (to appear)

[20] Burenkov V. I., Lamberti P. D., Spectral stability of Dirichlet second order uniformly elliptic operators, Gotovitsya k pechati

[21] Burenkov V. I., Lamberti P. D., Spectral stability of high order uniformly elliptic operators, Gotovitsya k pechati

[22] Burenkov V. I., Lanza de Cristoforis M., “Spectral stability of the Robin Laplacian” (to appear)

[23] Buser P., “On Cheeger's inequality $\lambda_1\geqslant h^2\/4$”, Proc. Sympos. Pure Math., 36, 1980, 29–77 | MR | Zbl

[24] Chatelain T., “A new approach to two overdetermined eigenvalue problems of Pompeiu type”, ESAIM Proc., 2 (1997), 235–242, Elektron. publik. | DOI | MR | Zbl

[25] Cheeger J., “A lower bound for the smallest eigenvalue of the Laplacian”, Problems in Analysis (Papers dedicated to Salomon Bochner, 1969), Princeton Univ. Press, NJ, Princeton, 1970, 195–199 | MR | Zbl

[26] Colin de Verdière Y., “Sur une hypothèse de transversalité d'Arnold”, Comment. Math. Helv., 63 (1988), 184–193 | DOI | MR | Zbl

[27] Cox S. J., “The generalized gradient at a multiple eigenvalue”, J. Funct. Anal., 133 (1995), 30–40 | DOI | MR | Zbl

[28] Davies E. B., Heat kernels and spectral theory, Cambridge University Press, Cambridge, 1990 | MR

[29] Davies E. B., “Eigenvalue stability bounds via weighted Sobolev spaces”, Math. Z., 214 (1993), 357–371 | DOI | MR | Zbl

[30] Davies E. B., Spectral theory and differential operators, Cambridge University Press, Cambridge, 1995 | MR

[31] Davies E. B., “A review on Hardy inequalities”, The Maz'ya anniversary collection, V. 2 (Rostock, 1998), Operator Theory: Advances and Applications, 110, Birkhäuser, 1999, 55–67 | MR | Zbl

[32] Davies E. B., “Sharp boundary estimates for elliptic operators”, Math. Proc. Camb. Phil. Soc., 129 (2000), 165–178 | DOI | MR | Zbl

[33] Hempel R., Seco L. A., Simon B., “The essential spectrum of Neumann Laplacians on some bounded singular domains”, J. Funct. Anal., 102 (1991), 448–483 | DOI | MR | Zbl

[34] Henry D., Topics in nonlinear analysis, no. 192, Univ. Brasilia, Trabalho de Matemática, Março, 1982

[35] Henry D., Perturbation of the Boundary in Boundary-Value Problems of Partial Differential Equations, London Mathematical Society Lecture Notes, 318, Cambridge University Press, Cambridge, 2005 | MR | Zbl

[36] Lamberti P. D., Lanza de Cristoforis M., “An analyticity result for the dependence of multiple eigenvalues and eigenspaces of the Laplace operator upon perturbation of the domain”, Glasgow Math. J., 44 (2002), 29–43 | DOI | MR | Zbl

[37] Lamberti P. D., Lanza de Cristoforis M., “A real analyticity result for symmetric functions of the eigenvalues of a domain dependent Dirichlet problem for the Laplace operator”, Journal of Nonlinear and Convex Analysis, 5 (2004), 19–42 | MR | Zbl

[38] Lamberti P. D., Lanza de Cristoforis M., “Lipschitz type inequalities for a domain dependent Neumann eigenvalue problem for the Laplace operator”, Advances in Analysis, Proc. 4th Int. ISAAC Congr. (York Univ., Toronto, Canada, 11–16 August 2003), eds. H. G. W. Begehr, R. P. Gilbert, M. E. Muldoon, M. W. Wong, World Scientific Publishing, 2005 | MR | Zbl

[39] Lamberti P. D., Lanza de Cristoforis M., “Persistence of eigenvalues and multiplicity in the Neumann problem for the Laplace operator on nonsmooth domains”, Rendiconti del Circolo Matematico di Palermo, Serie II, 76 (2005), 413–427, Suppl. | MR | Zbl

[40] Lamberti P. D., Lanza de Cristoforis M., “A global Lipschitz continuity result for a domain dependent Dirichlet eigenvalue problem for the Laplace operator”, Z. Anal. Anwendungen, 24 (2005), 277–304 | DOI | MR | Zbl

[41] Lamberti P. D., Lanza de Cristoforis M., “A global Lipschitz continuity result for a domain dependent Neumann eigenvalue problem for the Laplace operator”, J. Differential Equations, 216 (2005), 109–133 | DOI | MR | Zbl

[42] Lamberti P. D., Lanza de Cristoforis M., “Critical points of the symmetric functions of the eigenvalues of the Laplace operator and overdetermined problems”, J. Math. Soc. Japan (to appear)

[43] Lamberti P. D., Lanza de Cristoforis M., “Persistence of eigenvalues and multiplicity in the Dirichlet problem for the Laplace operator on nonsmooth domains”, Mathematical Physics, Analysis, and Geometry (to appear)

[44] Lamberti P. D., Lanza de Cristoforis M., “A real analyticity result for symmetric functions of the eigenvalues of a domain dependent Neumann problem for the Laplace operator” (to appear)

[45] Lapidus M. L., Pang M. M. H., “Eigenfunctions of the Koch snowflake domain”, Comm. Math. Phys., 172 (1995), 359–376 | DOI | MR | Zbl

[46] Lupo D., Micheletti A. M., “On multiple eigenvalues of selfadjoint compact operators”, J. Math. Anal. Appl., 172 (1993), 106–116 | DOI | MR | Zbl

[47] Lupo D., Micheletti A. M., “On the persistence of the multiplicity of eigenvalues for some variational elliptic operator on the domain”, J. Math. Anal. Appl., 193 (1995), 990–1002 | DOI | MR | Zbl

[48] Lupo D., Micheletti A. M., “A remark on the structure of the set of perturbations which keep fixed the multiplicity of two eigenvalues”, Rev. Mat. Apl., 16 (1995), 47–56 | MR | Zbl

[49] Micheletti A. M., “Perturbazione dello spettro dell'operatore di Laplace, in relazione ad una variazione del campo”, Ann. Scuola Norm. Sup. Pisa (3), 26 (1972), 151–169 | MR | Zbl

[50] Micheletti A. M., “Perturbazione dello spettro di un operatore ellittico di tipo variazionale, in relazione ad una variazione del campo”, Ann. Mat. Pura Appl., 97 (1973), 267–281 | DOI | MR | Zbl

[51] Micheletti A. M., “Perturbazione dello spettro di un operatore ellittico di tipo variazionale, in relazione ad una variazione del campo, II”, Ricerche Mat., 25 (1976), 187–200 | MR | Zbl

[52] Nečas J., Les Méthodes directes en theorie des equations elliptiques, Masson et Cie, Paris, 1967 | MR

[53] Pang M. M. H., “Approximation of ground state eigenfunction on the snowflake region”, Bull. Lond. Math. Soc., 28 (1996), 488–494 | DOI | MR | Zbl

[54] Pang M. M. H., “Approximation of ground state eigenvalues and eigenfunctions of Dirichlet Laplacians”, Bull. London Math. Soc., 29 (1997), 720–730 | DOI | MR | Zbl

[55] Pólya G., Schiffer M., “Convexity of functionals by transplantation”, J. Anal. Math., 3 (1954), 245–346 | MR

[56] Prodi G., “Dipendenza dal dominio degli autovalori dell'operatore di Laplace”, Istit. Lombardo Accad. Sci. Lett. Rend. A, 128 (1994), 3–18 | MR

[57] Rellich F., Perturbation theory of eigenvalue problems, Gordon and Breach Science Publisher, New York, 1969 | MR | Zbl

[58] Riesz F., Nagy B., Functional analysis, Gordon and Breach Science Publisher, New York, 1969

[59] Sokolowski J., Zolésio J. P., Introduction to shape optimization. Shape sensitivity analysis, Springer, Berlin, 1992 | MR

[60] Teytel M., “How rare are multiple eigenvalues?”, Comm. Pure Appl. Math., 52 (1999), 917–934 | 3.0.CO;2-S class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[61] Troianiello G. M., Elliptic differential equations and obstacle problems, Plenum Press, New York, London, 1987 | MR | Zbl