Nonlocal integrals and conservation laws in the theory of nonlinear solitons
Contemporary Mathematics. Fundamental Directions, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 1, Tome 15 (2006), pp. 59-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is natural to investigate properties of solutions to nonstationary linear equations of mathematical physics by means of time-invariant spaces of linear functionals. In the framework of this approach, there appear nonlinear (nonstationary) partial differential equations (dual to original ones) admitting nontrivial groups of self-similarities. The superposition principle in the space of solutions to an original equation can be reproduced for the dual equation in the form of convolutions of kernels of linear functionals. The corresponding construction is applied to the Schrödinger equation on the line, where the ideas of quantum mechanics allows one to understand this new approach.
@article{CMFD_2006_15_a5,
     author = {R. I. Bogdanov},
     title = {Nonlocal integrals and conservation laws in the theory of nonlinear solitons},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {59--75},
     publisher = {mathdoc},
     volume = {15},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2006_15_a5/}
}
TY  - JOUR
AU  - R. I. Bogdanov
TI  - Nonlocal integrals and conservation laws in the theory of nonlinear solitons
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2006
SP  - 59
EP  - 75
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2006_15_a5/
LA  - ru
ID  - CMFD_2006_15_a5
ER  - 
%0 Journal Article
%A R. I. Bogdanov
%T Nonlocal integrals and conservation laws in the theory of nonlinear solitons
%J Contemporary Mathematics. Fundamental Directions
%D 2006
%P 59-75
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2006_15_a5/
%G ru
%F CMFD_2006_15_a5
R. I. Bogdanov. Nonlocal integrals and conservation laws in the theory of nonlinear solitons. Contemporary Mathematics. Fundamental Directions, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 1, Tome 15 (2006), pp. 59-75. http://geodesic.mathdoc.fr/item/CMFD_2006_15_a5/

[1] Andronov A. A., Leontovich V. A., Gordon I. I., Maier A. G., Kachestvennaya teoriya dinamicheskikh sistem, M., 1966

[2] Arnold V. I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978 | MR

[3] Arnold V. I., Obyknovennye differentsialnye uravneniya, Nauka, M., 1984 | MR

[4] Berezin F. A., Shubin M. A., Uravnenie Shredingera, MGU, M., 1983 | MR

[5] Bogdanov R. I., “Teoriya pryamykh izmerenii po Puankare–Erenfestu dlya nestatsionarnogo uravneniya Shredingera na pryamoi”, Tr. sem. im. I. G. Petrovskogo, 20, 1977, 226–269

[6] Bogdanov R. I., “Simplekticheskaya orbitalnaya ekvivalentnost vektornykh polei na ploskosti (elementarnye osobye tochki)”, Matematika i modelirovanie, Puschino, 1990, 32–45 | MR | Zbl

[7] Bogdanov R. I., “Integraly pochti integriruemykh naborov vektornykh polei na ploskosti”, Tr. sem. im. I. G. Petrovskogo, no. 16, 1992, 70–105

[8] Bogdanov R. I., Lokalnaya orbitalnaya ekvivalentnost vektornykh polei na ploskosti, MGU, M., 1993

[9] Bogdanov R. I., “Lokalnye otnositelnye integralnye invarianty, svyazannye s fazovym portretom vektornogo polya na ploskosti”, Tr. sem. im. I. G. Petrovskogo, no. 17, 1993, 261–277

[10] Bogdanov R. I., “Singulyarnye otnositelnye integralnye invarianty i adiabaticheskie protsessy termodinamiki”, Itogi nauki i tekhn., 47, VINITI, M., 1997, 35–65

[11] Bogdanov R. I., “Nelokalnye pervye integraly polinomialnykh vektornykh polei na ploskosti”, Tr. seminara “Vremya, khaos i matematicheskie problemy”, 2, Knizhnyi dom “Universitet”, M., 2000, 203–213 | MR

[12] Bogdanov R. I., “Spektrometriya v slabodissipativnoi teorii Kolmogorova–Arnolda–Mozera”, Tr. seminara “Vremya, khaos i matematicheskie problemy”, 1, Knizhnyi dom “Universitet”, M., 2000, 203–224

[13] Bogdanov R. I., Nelineinye dinamicheskie sistemy na ploskosti i ikh prilozheniya, Vuzovskaya kniga, M., 2003

[14] Bogdanov R. I., “Lokalnye invarianty dinamicheskikh sistem na ploskosti”, Tr. seminara “Vremya, khaos i matematicheskie problemy”, 3, Knizhnyi dom “Universitet”, M., 2004, 105–120

[15] Bogdanov R. I., Rastorguev V. A., “Printsip neopredelennosti v klassicheskoi mekhanike”, Matematicheskie metody i prilozheniya, Trudy pyatykh matematicheskikh chtenii MGSU (26–31 yanvarya 1998), MGSU, M., 1998, 82–84

[16] Bogolyubov N. N., Izbrannye trudy, v 3-kh tomakh, Naukova dumka, Kiev; Т. 1, 1969; Т. 2, 1970; Т. 3, 1971

[17] Valenten Ya., Subatomnaya fizika (yadra i chastitsy), v 2-kh tomakh, Mir, M., 1986

[18] Giiemin V., Sternberg S., Geometricheskie asimptotiki, Mir, M., 1981 | MR

[19] Glimm Dzh., Dzhaffe A., Matematicheskie metody kvantovoi fiziki. Podkhod s ispolzovaniem funktsionalnykh integralov, Mir, M., 1984 | MR | Zbl

[20] Gnedenko B. V., Kurs teorii veroyatnostei, Nauka, M., 1988 | MR

[21] Dubrovin B. A., Krichever I. M., Novikov S. P., “Integriruemye sistemy”, Itogi nauki i tekhn., ser. Sovr. probl. mat., Fundam. napr., 4, VINITI, M., 1985, 179–284 | MR

[22] Kirillov A. A., Elementy teorii predstavlenii, Nauka, M., 1972 | MR

[23] Kolmogorov A. N., Izbrannye trudy. Matematika i mekhanika, Nauka, M., 1985 | MR

[24] Mandelshtam L. I., Lektsii po optike, teorii otnositelnosti i kvantovoi mekhanike, Nauka, M., 1972 | MR

[25] Messia A., Kvantovaya mekhanika, v 2-kh tomakh, Nauka, M., 1978–1979

[26] Neiman Dzh., Matematicheskie osnovy kvantovoi mekhaniki, Nauka, M., 1964 | MR

[27] Novikov S. P., “Periodicheskaya zadacha Kortevega – de Friza”, Funkts. analiz i ego prilozh., 8:3 (1974), 54–66 | MR | Zbl

[28] Nyuell A., Solitony v matematike i fizike, Mir, M., 1989 | MR

[29] Penrouz R., Novyi um korolya: o kompyuterakh, o myshlenii i zakonakh fiziki, Editorial URSS, M., 2005

[30] Petrovskii I. G., Izbrannye trudy. Differentsialnye uravneniya. Teoriya veroyatnostei, Nauka, M., 1987 | MR | Zbl

[31] Puankare A., O krivykh, opredelyaemykh differentsialnymi uravneniyami, Gostekhizdat, M., L., 1947

[32] Rouch P., Vychislitelnaya gidrodinamika, Mir, M., 1980 | Zbl

[33] Sternberg S., Lektsii po differentsialnoi geometrii, Mir, M., 1970 | MR | Zbl

[34] Takhtadzhyan L. A., Faddeev L. D., Gamiltonov podkhod v teorii solitonov, Nauka, Gl. red. fiz.-mat. lit., M., 1986 | MR | Zbl

[35] Feiman R., Teoriya fundamentalnykh protsessov, Nauka, M., 1978

[36] Solitony, Mir, M., 1983 | MR

[37] Bogdanov R. I., “Groups of symmetries for thermodynamics with degree of freedom one”, Abstr. of International Geometrical Colloqium, UNESCO (Moscow, May 10–14), 1993, 6

[38] Gardner C. S., Greene J. M., Kruskal M. D., Miura R. M., “Method for solving the Korteveg—de Vries equation”, Phys. Rev. Lett., 19 (1967), 1095–1097 | DOI

[39] Zabuski N. J., Kruskal M. D., “Interaction of “solitons” in a collisionless plasma and the recarrence of initial states”, Phys. Rev. Lett., 15 (1965), 240–243 | DOI