Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2006_15_a1, author = {C. Bardos}, title = {Analiticity and instablities for interfaces: from {Kelvin--Helmholtz} instability to water waves}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {19--28}, publisher = {mathdoc}, volume = {15}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2006_15_a1/} }
TY - JOUR AU - C. Bardos TI - Analiticity and instablities for interfaces: from Kelvin--Helmholtz instability to water waves JO - Contemporary Mathematics. Fundamental Directions PY - 2006 SP - 19 EP - 28 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2006_15_a1/ LA - ru ID - CMFD_2006_15_a1 ER -
C. Bardos. Analiticity and instablities for interfaces: from Kelvin--Helmholtz instability to water waves. Contemporary Mathematics. Fundamental Directions, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 1, Tome 15 (2006), pp. 19-28. http://geodesic.mathdoc.fr/item/CMFD_2006_15_a1/
[1] Nalimov V. I., “Zadacha Koshi–Puassona”, Dinamika sploshnoi sredy, 18 (1974), 104–210 | MR
[2] Yudovich V. I., “Nestatsionarnyi potok idealnoi neszhimaemoi zhidkosti”, Zhurn. vychisl. mat. i mat. fiz., 1963, no. 3, 1032–1066 | Zbl
[3] Beale T., Hou T., Lowengrug J., “Growth rates for the linearized motion of fluid interfaces away from equilibrium”, Commun. Pure Appl. Math., 46 (1993), 1269–1301 | DOI | MR | Zbl
[4] Caflisch R., Lowengrub J., “Convergence of the vortex methods for vortex sheets”, SIAM J. Numer. Anal., 26 (1989), 1060–1080 | DOI | MR | Zbl
[5] Caflisch R., Orellana O., “Singular solutions and ill-posedness for the evolution of vortex sheets”, SIAM J. Math. Anal., 20:2 (1989), 293–307 | DOI | MR | Zbl
[6] Caglioti E., Lions P. L., Marchioro C., Pulvirenti M., “A special class of stationary flows for two dimensional Euler equation. A statistical mechanics description”, Commun. Math. Phys., 143 (1992), 501–525 | DOI | MR | Zbl
[7] Craig W., “An existence theory for water waves and the Boussinesq and the Korteweg – de Vries scaling limits”, Comm. Partial Differential Equations, 10:8 (1985), 787–1003 | DOI | MR | Zbl
[8] Delort J.-M., “Existence de nappes de tourbillon en dimension deux”, J. Amer. Math. Soc., 4 (1991), 553–586 | DOI | MR | Zbl
[9] Duchon J., Robert R., “Global vortex sheet solutions of Euler equations in the plane”, J. Differential Equations, 73:2 (1988), 215–224 | DOI | MR | Zbl
[10] Kambe T., “Spiral vortex solution of Birkhoff–Rott equation”, Phys. D, 37:1–3 (1989), 463–473 | DOI | MR | Zbl
[11] Kamotski V., Lebeau G., “On 2D Rayleigh–Taylor instabilities”, Asympt. Anal., 42:1–2 (2005), 1–27 | MR | Zbl
[12] Krasny R., “Computation of vortex sheet roll-up in Trefftz plane”, J. Fluid Mech., 184 (1987), 123–155 | DOI | MR
[13] Lannes D., “Well-posedness of the water waves equations”, J. Amer. Math. Soc., 18 (2005), 605–654 | DOI | MR | Zbl
[14] Lopes Filho M. C., Nussenzveig Lopes H. J., Schochet S., “A criterion for the equivalence of the Birkhoff–Rott and Euler description of vortex sheet evolution” (to appear)
[15] Lopes Filho M. C., Nussenzveig Lopes H. J., Souza M. O., “On the equation satisfied by a steady Prandtl–Munk vortex sheet”, Commun. Math. Sci., 1:1 (2003), 68–73 | MR | Zbl
[16] Lopes Filho M. C., Nussenzveig Lopes H. J., Xin Z., “Existence of vortex sheets with reflection symmetry in two space dimensions”, Arch. Ration. Mech. Anal., 158:3 (2001), 235–257 | DOI | MR | Zbl
[17] Marchioro C., Pulvirenti M., “Mathematical theory of incompressible nonviscous fluids”, Appl. Math. Sci., 96 (1994) | MR | Zbl
[18] Meiron D., Baker G., Orszag S., “Analytic structure of vortex sheet dynamics. I: Kelvin–Helmholtz instability”, J. Fluid Mech., 114 (1982), 283–298 | DOI | MR | Zbl
[19] Moore D. W., “The spontaneous appearance of a singularity in the shape of an evolving vortex shee”, Proc. R. Soc. Lond., Ser. A, 365:1720 (1979), 105–119 | DOI | MR | Zbl
[20] Ovsjannikov L. V., “Cauchy problem in a scale of Banach spaces and its application to the shallow water theory justification”, Lect. Notes Math., 503, 1976, 426–437 | MR
[21] Pullin D. I., Buntine J. D., Saffman P. G., “The spectrum of a stretched spiral vortex”, Phys. Fluids, 6:9 (1994), 3010–3027 | DOI | MR | Zbl
[22] Scheffer V., “An inviscid flow with compact support in space-time”, J. Geom. Anal., 3 (1993), 343–401 | MR | Zbl
[23] Shnirelman A., “On the nonuniqueness of weak solutions of the Euler equations”, Commun. Pure Appl. Math., 50 (1997), 1261–1286 | 3.0.CO;2-6 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[24] Sulem C., Sulem P.-L., “Finite time analyticity for the two- and three-dimensional Rayleigh–Taylor instability”, Trans. Amer. Math. Soc., 287:1 (1981), 127–160 | DOI | MR
[25] Sulem C., Sulem P.-L., Bardos C., Frisch U., “Finite time analyticity for the two- and three-dimensional Kelvin–Helmholtz instability”, Commun. Math. Phys., 80 (1981), 485–516 | DOI | MR | Zbl
[26] Wu S., “Well-posedeness in Sobolev spaces of the full water wave problem in 2-D”, Invent. Math., 130 (1997), 439–472 | MR
[27] Wu S., “Recent progress in mathematical analysis of vortex sheets”, Proc. Int. Congr. Math., V. III (Beijing, 2002), 2002, 233–242 | MR
[28] Yosihara H., “Gravity waves on the free surface of an incompressible perfect fluid of finite depth”, Publ. Res. Inst. Math. Sci., 18:1 (1982), 49–96 | DOI | MR | Zbl