Analiticity and instablities for interfaces: from Kelvin--Helmholtz instability to water waves
Contemporary Mathematics. Fundamental Directions, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 1, Tome 15 (2006), pp. 19-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

This is devoted to the analysis of solution of fluid equations with interfaces and the purpose is to show how recent results on analyticity are related to the instabilities of the interface.
@article{CMFD_2006_15_a1,
     author = {C. Bardos},
     title = {Analiticity and instablities for interfaces: from {Kelvin--Helmholtz} instability to water waves},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {19--28},
     publisher = {mathdoc},
     volume = {15},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2006_15_a1/}
}
TY  - JOUR
AU  - C. Bardos
TI  - Analiticity and instablities for interfaces: from Kelvin--Helmholtz instability to water waves
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2006
SP  - 19
EP  - 28
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2006_15_a1/
LA  - ru
ID  - CMFD_2006_15_a1
ER  - 
%0 Journal Article
%A C. Bardos
%T Analiticity and instablities for interfaces: from Kelvin--Helmholtz instability to water waves
%J Contemporary Mathematics. Fundamental Directions
%D 2006
%P 19-28
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2006_15_a1/
%G ru
%F CMFD_2006_15_a1
C. Bardos. Analiticity and instablities for interfaces: from Kelvin--Helmholtz instability to water waves. Contemporary Mathematics. Fundamental Directions, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 1, Tome 15 (2006), pp. 19-28. http://geodesic.mathdoc.fr/item/CMFD_2006_15_a1/

[1] Nalimov V. I., “Zadacha Koshi–Puassona”, Dinamika sploshnoi sredy, 18 (1974), 104–210 | MR

[2] Yudovich V. I., “Nestatsionarnyi potok idealnoi neszhimaemoi zhidkosti”, Zhurn. vychisl. mat. i mat. fiz., 1963, no. 3, 1032–1066 | Zbl

[3] Beale T., Hou T., Lowengrug J., “Growth rates for the linearized motion of fluid interfaces away from equilibrium”, Commun. Pure Appl. Math., 46 (1993), 1269–1301 | DOI | MR | Zbl

[4] Caflisch R., Lowengrub J., “Convergence of the vortex methods for vortex sheets”, SIAM J. Numer. Anal., 26 (1989), 1060–1080 | DOI | MR | Zbl

[5] Caflisch R., Orellana O., “Singular solutions and ill-posedness for the evolution of vortex sheets”, SIAM J. Math. Anal., 20:2 (1989), 293–307 | DOI | MR | Zbl

[6] Caglioti E., Lions P. L., Marchioro C., Pulvirenti M., “A special class of stationary flows for two dimensional Euler equation. A statistical mechanics description”, Commun. Math. Phys., 143 (1992), 501–525 | DOI | MR | Zbl

[7] Craig W., “An existence theory for water waves and the Boussinesq and the Korteweg – de Vries scaling limits”, Comm. Partial Differential Equations, 10:8 (1985), 787–1003 | DOI | MR | Zbl

[8] Delort J.-M., “Existence de nappes de tourbillon en dimension deux”, J. Amer. Math. Soc., 4 (1991), 553–586 | DOI | MR | Zbl

[9] Duchon J., Robert R., “Global vortex sheet solutions of Euler equations in the plane”, J. Differential Equations, 73:2 (1988), 215–224 | DOI | MR | Zbl

[10] Kambe T., “Spiral vortex solution of Birkhoff–Rott equation”, Phys. D, 37:1–3 (1989), 463–473 | DOI | MR | Zbl

[11] Kamotski V., Lebeau G., “On 2D Rayleigh–Taylor instabilities”, Asympt. Anal., 42:1–2 (2005), 1–27 | MR | Zbl

[12] Krasny R., “Computation of vortex sheet roll-up in Trefftz plane”, J. Fluid Mech., 184 (1987), 123–155 | DOI | MR

[13] Lannes D., “Well-posedness of the water waves equations”, J. Amer. Math. Soc., 18 (2005), 605–654 | DOI | MR | Zbl

[14] Lopes Filho M. C., Nussenzveig Lopes H. J., Schochet S., “A criterion for the equivalence of the Birkhoff–Rott and Euler description of vortex sheet evolution” (to appear)

[15] Lopes Filho M. C., Nussenzveig Lopes H. J., Souza M. O., “On the equation satisfied by a steady Prandtl–Munk vortex sheet”, Commun. Math. Sci., 1:1 (2003), 68–73 | MR | Zbl

[16] Lopes Filho M. C., Nussenzveig Lopes H. J., Xin Z., “Existence of vortex sheets with reflection symmetry in two space dimensions”, Arch. Ration. Mech. Anal., 158:3 (2001), 235–257 | DOI | MR | Zbl

[17] Marchioro C., Pulvirenti M., “Mathematical theory of incompressible nonviscous fluids”, Appl. Math. Sci., 96 (1994) | MR | Zbl

[18] Meiron D., Baker G., Orszag S., “Analytic structure of vortex sheet dynamics. I: Kelvin–Helmholtz instability”, J. Fluid Mech., 114 (1982), 283–298 | DOI | MR | Zbl

[19] Moore D. W., “The spontaneous appearance of a singularity in the shape of an evolving vortex shee”, Proc. R. Soc. Lond., Ser. A, 365:1720 (1979), 105–119 | DOI | MR | Zbl

[20] Ovsjannikov L. V., “Cauchy problem in a scale of Banach spaces and its application to the shallow water theory justification”, Lect. Notes Math., 503, 1976, 426–437 | MR

[21] Pullin D. I., Buntine J. D., Saffman P. G., “The spectrum of a stretched spiral vortex”, Phys. Fluids, 6:9 (1994), 3010–3027 | DOI | MR | Zbl

[22] Scheffer V., “An inviscid flow with compact support in space-time”, J. Geom. Anal., 3 (1993), 343–401 | MR | Zbl

[23] Shnirelman A., “On the nonuniqueness of weak solutions of the Euler equations”, Commun. Pure Appl. Math., 50 (1997), 1261–1286 | 3.0.CO;2-6 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[24] Sulem C., Sulem P.-L., “Finite time analyticity for the two- and three-dimensional Rayleigh–Taylor instability”, Trans. Amer. Math. Soc., 287:1 (1981), 127–160 | DOI | MR

[25] Sulem C., Sulem P.-L., Bardos C., Frisch U., “Finite time analyticity for the two- and three-dimensional Kelvin–Helmholtz instability”, Commun. Math. Phys., 80 (1981), 485–516 | DOI | MR | Zbl

[26] Wu S., “Well-posedeness in Sobolev spaces of the full water wave problem in 2-D”, Invent. Math., 130 (1997), 439–472 | MR

[27] Wu S., “Recent progress in mathematical analysis of vortex sheets”, Proc. Int. Congr. Math., V. III (Beijing, 2002), 2002, 233–242 | MR

[28] Yosihara H., “Gravity waves on the free surface of an incompressible perfect fluid of finite depth”, Publ. Res. Inst. Math. Sci., 18:1 (1982), 49–96 | DOI | MR | Zbl