Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2003_3_a5, author = {G. Schmidt}, title = {Electromagnetic {Scattering} by {Periodic} {Structures}}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {113--128}, publisher = {mathdoc}, volume = {3}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2003_3_a5/} }
G. Schmidt. Electromagnetic Scattering by Periodic Structures. Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Differential and Functional-Differential Equations — Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11–17 August, 2002). Part 3, Tome 3 (2003), pp. 113-128. http://geodesic.mathdoc.fr/item/CMFD_2003_3_a5/
[1] Abboud T., Étude mathématique et numérique de quelques problèmes de diffraction d'ondes électromagnétiques, PhD dissertation, Ecole Polytechnique Palaiseau, 1991
[2] Abboud T., “Formulation variationnelle des équations de Maxwell dans un réseau bipériodic de $\mathbb R^3$”, C. R. Acad. Sci. Paris, Sér. I Math., 317 (1993), 245–248 | MR | Zbl
[3] Bao G., “Numerical analysis of diffraction by periodic structures: TM polarization”, Numer. Math., 75 (1996), 1–16 | DOI | MR | Zbl
[4] Bao G., “Variational approximation of Maxwell's equations in biperiodic structures”, SIAM J. Appl. Math., 57 (1997), 364–381 | DOI | MR | Zbl
[5] Bao G., Dobson D. C., “On the scattering by a biperiodic structure”, Proc. Am. Math. Soc., 128 (2000), 2715–2723 | DOI | MR | Zbl
[6] Costabel M., Dauge M., Nicaise S., “Singularities of Maxwell interface problems”, Model. Math. Anal. Numer., 33 (1999), 627–649 | DOI | MR | Zbl
[7] Dobson D. C., “Optimal design of periodic antireflective structures for the Helmholtz equation”, Eur. J. Appl. Math., 4, 321–339 | MR | Zbl
[8] Dobson D. C., “A variational method for electromagnetic diffraction in biperiodic structures”, Model. Math. Anal. Numer., 28 (1994), 419–439 | MR | Zbl
[9] Dobson D. C., Friedman A., “The time–harmonic Maxwell equations in biperiodic structures”, J. Math. Anal. Appl., 166 (1992), 507–528 | DOI | MR | Zbl
[10] Elschner J., Schmidt G., “Diffraction in periodic structures and optimal design of binary gratings I. Direct problems and gradient formulas”, Math. Methods Appl. Sci., 21 (1998), 1297–1342 | 3.0.CO;2-C class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[11] Elschner J., Hinder R., Penzel F., Schmidt G., “Existence, uniqueness and regularity for solutions of the conical diffraction problem”, Math. Models Methods Appl. Sci., 10 (2000), 317–341 | MR | Zbl
[12] Girault V., Raviart P., Finite element methods for Navier–Stokes equations, Springer-Verlag, Berlin, 1986 | MR | Zbl
[13] Nedelec J. C., Starling F., “Integral equation methods in a quasi-periodic diffraction problem for the time-harmonic Maxwell equation”, SIAM J. Appl. Math., 22 (1991), 1679–1701 | DOI | MR | Zbl
[14] Schmidt G., On the diffraction by biperiodic anisotropic structures, Preprint No 751, WIAS, Berlin, 2002 | MR