Electromagnetic Scattering by Periodic Structures
Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Differential and Functional-Differential Equations — Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11–17 August, 2002). Part 3, Tome 3 (2003), pp. 113-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the scattering of electromagnetic waves by quite general biperiodic structures which may consist of anisotropic optical materials and separate two regions with constant dielectric coefficients. The time-harmonic Maxwell equations are transformed to an equivalent $H^1$-variational problem for the magnetic field in a bounded biperiodic cell with nonlocal boundary conditions. The existence of solutions is shown for all physically relevant material parameters. The uniqueness is proved for all frequencies excluding possibly a discrete set. The results of the general problem are compared with known results for a special case, the conical diffraction.
@article{CMFD_2003_3_a5,
     author = {G. Schmidt},
     title = {Electromagnetic {Scattering} by {Periodic} {Structures}},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {113--128},
     publisher = {mathdoc},
     volume = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2003_3_a5/}
}
TY  - JOUR
AU  - G. Schmidt
TI  - Electromagnetic Scattering by Periodic Structures
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2003
SP  - 113
EP  - 128
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2003_3_a5/
LA  - ru
ID  - CMFD_2003_3_a5
ER  - 
%0 Journal Article
%A G. Schmidt
%T Electromagnetic Scattering by Periodic Structures
%J Contemporary Mathematics. Fundamental Directions
%D 2003
%P 113-128
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2003_3_a5/
%G ru
%F CMFD_2003_3_a5
G. Schmidt. Electromagnetic Scattering by Periodic Structures. Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Differential and Functional-Differential Equations — Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11–17 August, 2002). Part 3, Tome 3 (2003), pp. 113-128. http://geodesic.mathdoc.fr/item/CMFD_2003_3_a5/

[1] Abboud T., Étude mathématique et numérique de quelques problèmes de diffraction d'ondes électromagnétiques, PhD dissertation, Ecole Polytechnique Palaiseau, 1991

[2] Abboud T., “Formulation variationnelle des équations de Maxwell dans un réseau bipériodic de $\mathbb R^3$”, C. R. Acad. Sci. Paris, Sér. I Math., 317 (1993), 245–248 | MR | Zbl

[3] Bao G., “Numerical analysis of diffraction by periodic structures: TM polarization”, Numer. Math., 75 (1996), 1–16 | DOI | MR | Zbl

[4] Bao G., “Variational approximation of Maxwell's equations in biperiodic structures”, SIAM J. Appl. Math., 57 (1997), 364–381 | DOI | MR | Zbl

[5] Bao G., Dobson D. C., “On the scattering by a biperiodic structure”, Proc. Am. Math. Soc., 128 (2000), 2715–2723 | DOI | MR | Zbl

[6] Costabel M., Dauge M., Nicaise S., “Singularities of Maxwell interface problems”, Model. Math. Anal. Numer., 33 (1999), 627–649 | DOI | MR | Zbl

[7] Dobson D. C., “Optimal design of periodic antireflective structures for the Helmholtz equation”, Eur. J. Appl. Math., 4, 321–339 | MR | Zbl

[8] Dobson D. C., “A variational method for electromagnetic diffraction in biperiodic structures”, Model. Math. Anal. Numer., 28 (1994), 419–439 | MR | Zbl

[9] Dobson D. C., Friedman A., “The time–harmonic Maxwell equations in biperiodic structures”, J. Math. Anal. Appl., 166 (1992), 507–528 | DOI | MR | Zbl

[10] Elschner J., Schmidt G., “Diffraction in periodic structures and optimal design of binary gratings I. Direct problems and gradient formulas”, Math. Methods Appl. Sci., 21 (1998), 1297–1342 | 3.0.CO;2-C class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[11] Elschner J., Hinder R., Penzel F., Schmidt G., “Existence, uniqueness and regularity for solutions of the conical diffraction problem”, Math. Models Methods Appl. Sci., 10 (2000), 317–341 | MR | Zbl

[12] Girault V., Raviart P., Finite element methods for Navier–Stokes equations, Springer-Verlag, Berlin, 1986 | MR | Zbl

[13] Nedelec J. C., Starling F., “Integral equation methods in a quasi-periodic diffraction problem for the time-harmonic Maxwell equation”, SIAM J. Appl. Math., 22 (1991), 1679–1701 | DOI | MR | Zbl

[14] Schmidt G., On the diffraction by biperiodic anisotropic structures, Preprint No 751, WIAS, Berlin, 2002 | MR