Spectral Portraits of the Orr--Sommerfeld Operator with Large Reynolds Numbers
Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Differential and Functional-Differential Equations — Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11–17 August, 2002). Part 3, Tome 3 (2003), pp. 89-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

The model problem $-i\varepsilon y''+q(x)y=\lambda y$, $y(-1)=y(1)=0$ is associated with the Orr–Sommerfeld operator well-known in hydrodynamics. Here $\lambda$ is the spectral parameter, $\varepsilon$ is the small parameter which is proportional to the viscosity of the liquid and to the reciprocal of the Reynolds number, and $q(x)$ is the velocity of the stationary flow of the liquid in the channel $|x|\leqslant1$. We study the behavior of the spectrum of the corresponding model operator as $\varepsilon\to0$ with linear, quadratic, and monotonic analytic functions. We show that the sets of accumulation points of the spectra (the limit spectral graphs) of the model and corresponding Orr–Sommerfeld operators coincide just as the main terms of the eigenvalue counting functions along the curves of the graphs do.
@article{CMFD_2003_3_a4,
     author = {A. A. Shkalikov},
     title = {Spectral {Portraits} of the {Orr--Sommerfeld} {Operator} with {Large} {Reynolds} {Numbers}},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {89--112},
     publisher = {mathdoc},
     volume = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2003_3_a4/}
}
TY  - JOUR
AU  - A. A. Shkalikov
TI  - Spectral Portraits of the Orr--Sommerfeld Operator with Large Reynolds Numbers
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2003
SP  - 89
EP  - 112
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2003_3_a4/
LA  - ru
ID  - CMFD_2003_3_a4
ER  - 
%0 Journal Article
%A A. A. Shkalikov
%T Spectral Portraits of the Orr--Sommerfeld Operator with Large Reynolds Numbers
%J Contemporary Mathematics. Fundamental Directions
%D 2003
%P 89-112
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2003_3_a4/
%G ru
%F CMFD_2003_3_a4
A. A. Shkalikov. Spectral Portraits of the Orr--Sommerfeld Operator with Large Reynolds Numbers. Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Differential and Functional-Differential Equations — Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11–17 August, 2002). Part 3, Tome 3 (2003), pp. 89-112. http://geodesic.mathdoc.fr/item/CMFD_2003_3_a4/

[1] Dyachenko A. V., Shkalikov A. A., “O modelnoi zadache dlya uravneniya Orra–Zommerfelda s lineinym profilem”, Funkts. analiz i ego prilozh., 36:3 (2002), 71–75 | MR | Zbl

[2] Dyachenko A. V., Shkalikov A. A., Uravnenie Orra–Zommerfelda s lineinym profilem, arxiv.org: math.FA/0212127

[3] Neiman-zade M. I., Shkalikov A. A., “O vychislenii sobstvennykh znachenii zadachi Orra–Zommerfelda”, Fund. i prikl. mat., 8:1 (2002), 301–305 | MR | Zbl

[4] Olver F., Asimptotika i spetsialnye funktsii, Nauka, M., 1990 | MR | Zbl

[5] Rozenblyum G. V., Solomyak M. Z., Shubin M. A., Spektralnaya teoriya differentsialnykh operatorov, Itogi nauki i tekhn., ser. Sovr. probl. mat., Fundam. napr., 64, VINITI, M., 1989 | MR

[6] Stëpin S. A., “Model perekhoda ot diskretnogo spektra k nepreryvnomu”, Fund. i prikl. mat., 6:4 (1997), 1199–1227 | MR

[7] Tumanov S. N., Shkalikov A. A., “O predelnom povedenii spektra modelnoi zadachi dlya uravneniya Orra–Zommerfelda s profilem Puazeilya”, Izv. RAN, 66:4 (2002), 177–204 | MR | Zbl

[8] Tumanov S. N., Shkalikov A. A., “O lokalizatsii spektra dlya zadachi Orra–Zommerfelda pri bolshikh chislakh Reinoldsa”, Mat. zametki, 72:4 (2002), 561–569 | MR | Zbl

[9] Tumanov S. N., Shkalikov A. A., O modelnoi zadache dlya uravneniya Orra–Zommerfelda s kvadratichnym profilem, arxiv.org: math-ph/0212074

[10] Fedoryuk M. V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | MR | Zbl

[11] Shkalikov A. A., “O predelnom povedenii spektra pri bolshikh znacheniyakh parametra odnoi modelnoi zadachi”, Mat. zametki, 62:6 (1997), 950–953 | MR | Zbl

[12] Shkalikov A. A., “Teoremy tauberova tipa o raspredelenii nulei golomorfnykh funktsii”, Mat. sbornik, 123(165):3 (1984), 317–347 | MR | Zbl

[13] Chapman S. J., “Subcritical transition in channel flows”, J. Fluid Mech., 451 (2002), 35–97 | DOI | MR | Zbl

[14] Drazin R. G., Reid W. H., Hydrodynamic stability, Cambridge University Press, 1982 | MR

[15] Lin C. C., “On the stability of two-dimensional parallel flows, Part I–III”, Q. Appl. Math., 3 (1945), 117–142 | MR | Zbl

[16] Morawetz C. S., “The eigenvalues of some stability problems involving viscosity”, J. Rat. Mech. Anal., 1 (1952), 579–603 | MR | Zbl

[17] Reddy S. G., Schmidt P. J., Henningson D. S., “Pseudospectra of the Orr–Sommerfeld operator”, SIAM J. Appl. Math., 53:1 (1993), 15–47 | DOI | MR | Zbl

[18] Redparth P., “Spectral properties of non-selfadjoint operators in the semiclassical regime”, J. Differ. Equations, 177:2 (2001), 307–330 ; arxiv.org: math.SP/0003044 | DOI | MR | Zbl

[19] Shkalikov A. A., “Quasi-classical eigenvalue distribution for a non-selfadjoint Sturm–Liouville operators”, Spectral Analysis of Differential and Difference operators, Stephan Banach Intern. Math. Center., Warsaw, 2001, 37–40

[20] Trefethen L. N., “Pseudospectra of linear operators”, ISIAM 95: Proc. Third Int. Congress Industrial Appl. Math., Acad. Verlag, Berlin, 1996, 401–434 | MR