Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2003_3_a3, author = {R. Sch\"afke}, title = {Inverse {Problems} in the {Theory} of {Singular} {Perturbations}}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {63--88}, publisher = {mathdoc}, volume = {3}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2003_3_a3/} }
R. Schäfke. Inverse Problems in the Theory of Singular Perturbations. Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Differential and Functional-Differential Equations — Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11–17 August, 2002). Part 3, Tome 3 (2003), pp. 63-88. http://geodesic.mathdoc.fr/item/CMFD_2003_3_a3/
[1] Balser W., Formal power series and linear systems of meromorphic ordinary differential equations, Springer, New York, 2000 | MR | Zbl
[2] Bodine S., Schäfke R., “On the summability of formal solutions in Liouville-Green theory”, J. Dynamical Control Systems, 8 (2002), 371–398 | DOI | MR | Zbl
[3] Bolibruch A., Fuchsian differential equations and holomorphic bundles, MCCME, Moscow, 2000 (in Russian)
[4] Canalis–Durand M., Ramis J. P., Schäfke R., Sibuya Y., “Gevrey solutions of singularly perturbed differential and difference equations”, J. Reine Angew. Math., 518 (2000), 95–129 | DOI | MR
[5] Cook L. P., Eckhaus W., “Resonance in a boundary value problem of singular perturbation type”, Stud. Appl. Math., 52 (1973), 129–139 | MR | Zbl
[6] Dunster T. M., Lutz D. A., Schäfke R., “Convergent Liouville-Green expansions for second-order linear differential equations, with an application to Bessel functions”, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 440 (1993), 37–54 | DOI | MR | Zbl
[7] Fruchard A., Schäfke R., “Overstability and resonance”, Ann. Inst. Fourier, 53:1 (2003), 227–264 | MR | Zbl
[8] Fruchard A., Schäfke R., Classification of resonant equations, Manuscript, 2002 | Zbl
[9] Hsieh P. F., Sibuya Y., Basic theory of ordinary differential equations, Springer, New York, 1999 | MR | Zbl
[10] Kopell N., “A geometric approach to boundary layer problems exhibiting resonance”, SIAM J. Appl. Math., 37:2 (1979), 436–458 | DOI | MR | Zbl
[11] Lakin W. D., “Boundary value problems with a turning point”, Stud. Appl. Math., 51 (1972), 261–275 | MR | Zbl
[12] Lin C. H., “The sufficiency of Matkowsky-condition in the problem of resonance”, Trans. Am. Math. Soc., 278:2 (1983), 647–670 | DOI | MR | Zbl
[13] Lutz D. A., Miyake M., Schäfke R., “On the Borel summability of divergent solutions of the heat equation”, Nagoya Math. J., 154 (1999), 1–29 | MR | Zbl
[14] Matkowsky B. J., “On boundary layer problems exhibiting resonance”, SIAM Rev., 17:1 (1975), 82–100 | DOI | MR
[15] Olver F. W. J., Asymptotics and special functions, Academic Press, New York, 1974 | MR
[16] Sibuya Y., “On the convergence of formal solutions of systems of linear ordinary differential equations containing a parameter”, MRC Technical Summary Report, 511, University of Wisconsin, Madison, 1964
[17] Sibuya Y., “A theorem concerning uniform simplification at a transition point and the problem of resonance”, SIAM J. Math. Anal., 12 (1981), 653–668 | DOI | MR | Zbl
[18] Sibuya Y., Linear differential equations in the complex domain: Problems of analytic continuation, Transl. Math. Monogr., 82, 1990 | MR | Zbl
[19] Sibuya Y., “Gevrey property of formal solutions in a parameter”, Lect. Notes Pure Appl. Math., 124, 1990, 394–401 | MR
[20] Sibuya Y., “The Gevrey asymptotics in the case of singular perturbations”, J. Differ. Equations, 165 (2000), 255–311 | DOI | MR
[21] Stenger C., “On a conjecture of W. Wasow concerning the nature of turning points”, C. R. Acad. Sci., 325 (1997), 27–32 | MR | Zbl
[22] Stenger C., Points tournants de systèmes d'équations différentielles ordinaires singulièrements perturbées, Thesis, Preprint IRMA, Strasbourg, France, 1999 | MR
[23] Wasow W., Asymptotic expansions for ordinary differential equations, Robert E. Krieger Publishing Co., New York, 1976 | MR
[24] Wasow W., Linear turning point theory, Springer, New York, 1985 | MR | Zbl