Inverse Problems in the Theory of Singular Perturbations
Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Differential and Functional-Differential Equations — Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11–17 August, 2002). Part 3, Tome 3 (2003), pp. 63-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

First, in joint work with S. Bodine of the University of Puget Sound, Tacoma, Washington, USA, we consider the second-order differential equation $\varepsilon^2y''=(1+\varepsilon^2\psi(x,\varepsilon))y$ with a small parameter $\varepsilon$, where $\psi$ is analytic and even with respect to $\varepsilon$. It is well known that it has two formal solutions of the form $y^\pm(x,\varepsilon)=e^{\pm x/\varepsilon}h^\pm(x,\varepsilon)$, where $h^\pm(x,\varepsilon)$ is a formal series in powers of $\varepsilon$ whose coefficients are functions of $x$. It has been shown that one (resp. both) of these solutions are 1-summable in certain directions if $\psi$ satisfies certain conditions, in particular concerning its $x$-domain. We show that these conditions are essentially necessary for 1-summability of one (resp. both) of the above formal solutions. In the proof, we solve a certain inverse problem: constructing a differential equation corresponding to a certain Stokes phenomenon. The second part of the paper presents joint work with Augustin Fruchard of the University of La Rochelle, France, concerning inverse problems for the general (analytic) linear equations $\varepsilon^ry'=A(x,\varepsilon)$ in the neighborhood of a nonturning point and for second-order (analytic) equations $\varepsilon y''-2xy'-g(x,\varepsilon)y=0$ exhibiting resonance in the sense of Ackerberg–O'Malley, i.e., satisfying the Matkowsky condition: there exists a nontrivial formal solution $\hat y(x,\varepsilon)=\sum y_n(x)\varepsilon^n$ such that the coefficients have no poles at $x=0$.
@article{CMFD_2003_3_a3,
     author = {R. Sch\"afke},
     title = {Inverse {Problems} in the {Theory} of {Singular} {Perturbations}},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {63--88},
     publisher = {mathdoc},
     volume = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2003_3_a3/}
}
TY  - JOUR
AU  - R. Schäfke
TI  - Inverse Problems in the Theory of Singular Perturbations
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2003
SP  - 63
EP  - 88
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2003_3_a3/
LA  - ru
ID  - CMFD_2003_3_a3
ER  - 
%0 Journal Article
%A R. Schäfke
%T Inverse Problems in the Theory of Singular Perturbations
%J Contemporary Mathematics. Fundamental Directions
%D 2003
%P 63-88
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2003_3_a3/
%G ru
%F CMFD_2003_3_a3
R. Schäfke. Inverse Problems in the Theory of Singular Perturbations. Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Differential and Functional-Differential Equations — Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11–17 August, 2002). Part 3, Tome 3 (2003), pp. 63-88. http://geodesic.mathdoc.fr/item/CMFD_2003_3_a3/

[1] Balser W., Formal power series and linear systems of meromorphic ordinary differential equations, Springer, New York, 2000 | MR | Zbl

[2] Bodine S., Schäfke R., “On the summability of formal solutions in Liouville-Green theory”, J. Dynamical Control Systems, 8 (2002), 371–398 | DOI | MR | Zbl

[3] Bolibruch A., Fuchsian differential equations and holomorphic bundles, MCCME, Moscow, 2000 (in Russian)

[4] Canalis–Durand M., Ramis J. P., Schäfke R., Sibuya Y., “Gevrey solutions of singularly perturbed differential and difference equations”, J. Reine Angew. Math., 518 (2000), 95–129 | DOI | MR

[5] Cook L. P., Eckhaus W., “Resonance in a boundary value problem of singular perturbation type”, Stud. Appl. Math., 52 (1973), 129–139 | MR | Zbl

[6] Dunster T. M., Lutz D. A., Schäfke R., “Convergent Liouville-Green expansions for second-order linear differential equations, with an application to Bessel functions”, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 440 (1993), 37–54 | DOI | MR | Zbl

[7] Fruchard A., Schäfke R., “Overstability and resonance”, Ann. Inst. Fourier, 53:1 (2003), 227–264 | MR | Zbl

[8] Fruchard A., Schäfke R., Classification of resonant equations, Manuscript, 2002 | Zbl

[9] Hsieh P. F., Sibuya Y., Basic theory of ordinary differential equations, Springer, New York, 1999 | MR | Zbl

[10] Kopell N., “A geometric approach to boundary layer problems exhibiting resonance”, SIAM J. Appl. Math., 37:2 (1979), 436–458 | DOI | MR | Zbl

[11] Lakin W. D., “Boundary value problems with a turning point”, Stud. Appl. Math., 51 (1972), 261–275 | MR | Zbl

[12] Lin C. H., “The sufficiency of Matkowsky-condition in the problem of resonance”, Trans. Am. Math. Soc., 278:2 (1983), 647–670 | DOI | MR | Zbl

[13] Lutz D. A., Miyake M., Schäfke R., “On the Borel summability of divergent solutions of the heat equation”, Nagoya Math. J., 154 (1999), 1–29 | MR | Zbl

[14] Matkowsky B. J., “On boundary layer problems exhibiting resonance”, SIAM Rev., 17:1 (1975), 82–100 | DOI | MR

[15] Olver F. W. J., Asymptotics and special functions, Academic Press, New York, 1974 | MR

[16] Sibuya Y., “On the convergence of formal solutions of systems of linear ordinary differential equations containing a parameter”, MRC Technical Summary Report, 511, University of Wisconsin, Madison, 1964

[17] Sibuya Y., “A theorem concerning uniform simplification at a transition point and the problem of resonance”, SIAM J. Math. Anal., 12 (1981), 653–668 | DOI | MR | Zbl

[18] Sibuya Y., Linear differential equations in the complex domain: Problems of analytic continuation, Transl. Math. Monogr., 82, 1990 | MR | Zbl

[19] Sibuya Y., “Gevrey property of formal solutions in a parameter”, Lect. Notes Pure Appl. Math., 124, 1990, 394–401 | MR

[20] Sibuya Y., “The Gevrey asymptotics in the case of singular perturbations”, J. Differ. Equations, 165 (2000), 255–311 | DOI | MR

[21] Stenger C., “On a conjecture of W. Wasow concerning the nature of turning points”, C. R. Acad. Sci., 325 (1997), 27–32 | MR | Zbl

[22] Stenger C., Points tournants de systèmes d'équations différentielles ordinaires singulièrements perturbées, Thesis, Preprint IRMA, Strasbourg, France, 1999 | MR

[23] Wasow W., Asymptotic expansions for ordinary differential equations, Robert E. Krieger Publishing Co., New York, 1976 | MR

[24] Wasow W., Linear turning point theory, Springer, New York, 1985 | MR | Zbl