On the Problem of Evolution of an Isolated Liquid Mass
Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Differential and Functional-Differential Equations — Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11–17 August, 2002). Part 3, Tome 3 (2003), pp. 43-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with the problem of stability of equilibrium figures of a uniformly rotating, viscous, incompressible, self-gravitating liquid subjected to capillary forces at the boundary. It is shown that a rotationally symmetric equilibrium figure $F$ is exponentially stable if the functional $G$ defined on the set of domains $\Omega$ close to $F$ and satisfying the conditions of volume invariance ($|\Omega|=|F|$) and the barycenter position attains its minimum for $\Omega=F$. The proof is based on the direct analysis of the corresponding evolution problem with initial data close to the regime of a rigid rotation.
@article{CMFD_2003_3_a2,
     author = {V. A. Solonnikov},
     title = {On the {Problem} of {Evolution} of an {Isolated} {Liquid} {Mass}},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {43--62},
     publisher = {mathdoc},
     volume = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2003_3_a2/}
}
TY  - JOUR
AU  - V. A. Solonnikov
TI  - On the Problem of Evolution of an Isolated Liquid Mass
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2003
SP  - 43
EP  - 62
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2003_3_a2/
LA  - ru
ID  - CMFD_2003_3_a2
ER  - 
%0 Journal Article
%A V. A. Solonnikov
%T On the Problem of Evolution of an Isolated Liquid Mass
%J Contemporary Mathematics. Fundamental Directions
%D 2003
%P 43-62
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2003_3_a2/
%G ru
%F CMFD_2003_3_a2
V. A. Solonnikov. On the Problem of Evolution of an Isolated Liquid Mass. Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Differential and Functional-Differential Equations — Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11–17 August, 2002). Part 3, Tome 3 (2003), pp. 43-62. http://geodesic.mathdoc.fr/item/CMFD_2003_3_a2/

[5] Appel P., Figury ravnovesiya vraschayuscheisya odnorodnoi zhidkosti, M.–L., 1936

[6] Likhtenshtein L., Figury ravnovesiya vraschayuscheisya zhidkosti, Nauka, M., 1965

[7] Lyapunov A. M., “Ob ustoichivosti ellipsoidalnykh form ravnovesiya vraschayuscheisya zhidkosti”, Sobr. soch., t. 3, 1959, 5–113

[8] Myshkis A. D., Gidromekhanika nevesomosti, Nauka, M., 1976

[9] Solonnikov V. A., “O neustanovivshemsya dvizhenii konechnoi massy zhidkosti, ogranichennoi svobodnoi poverkhnostyu”, Zap. nauch. sem. LOMI, 152 (1986), 137–157 | Zbl

[10] Solonnikov V. A., “O neustanovivshemsya dvizhenii konechnoi izolirovannoi massy samogravitiruyuschei zhidkosti”, Algebra Anal., 1:1 (1989), 207–249 | Zbl

[11] Solonnikov V. A., “Otsenka obobschennoi energii v zadache so svobodnoi granitsei dlya vyazkoi neszhimaemoi zhidkosti”, Zap. nauch. sem. POMI, 282 (2001), 216–243 | Zbl

[12] Hölder E., “Gleichgewichtsfiguren rotierenden Fläsigkeiten mit Oberflächen-spannung”, Math. Z., 25:1 (1926), 188–208 | DOI | MR | Zbl

[13] Padula M., Solonnikov V. A., “Existence of non-steady flows of an incompressible, viscous drop of fluid in a frame rotating with finite angular velocity”, Elliptic and Parabolic Problems, World Scientific Publ., River Edge, New Jersey, 2002, 180–203 | MR | Zbl

[14] Padula M., “On the exponential stability of the rest state of a viscous isotermal fluid”, J. Math. Fluid Mech., 1 (1999), 62–67 | DOI | MR

[15] Padula M., Solonnikov V. A., “On Rayleigh–Taylor stability”, Ann. Univ. Ferrara, Nuova Ser., Sez. VII, 46 (2000), 307–336 | MR | Zbl

[16] Solonnikov V. A., “On the justification of quasistationary approximation in the problem of motion of a viscous capillary drop”, Interfaces Free Boundaries, 1 (1999), 125–173 | DOI | MR | Zbl

[17] Solonnikov V. A., “Lectures on evolution free boundary problem: classical solutions”, Mathematical aspects of evolving interfaces, Lect. Notes Math., Springer, 2003 | MR | Zbl