Adiabatic Limit for Some Nonlinear Equations of Gauge Field Theory
Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Differential and Functional-Differential Equations — Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11–17 August, 2002). Part 3, Tome 3 (2003), pp. 33-42
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the adiabatic limit for nonlinear dynamic equations of gauge field theory. Our main example of such equations is given by the Abelian $(2+1)$-dimensional Higgs model. We show next that the Taubes correspondence, which assigns pseudoholomorphic curves to solutions of Seiberg–Witten equations on symplectic 4-manifolds, may be interpreted as a complex analogue of the adiabatic limit construction in the $(2+1)$-dimensional case.
@article{CMFD_2003_3_a1,
     author = {A. G. Sergeev},
     title = {Adiabatic {Limit} for {Some} {Nonlinear} {Equations} of {Gauge} {Field} {Theory}},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {33--42},
     year = {2003},
     volume = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2003_3_a1/}
}
TY  - JOUR
AU  - A. G. Sergeev
TI  - Adiabatic Limit for Some Nonlinear Equations of Gauge Field Theory
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2003
SP  - 33
EP  - 42
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/CMFD_2003_3_a1/
LA  - ru
ID  - CMFD_2003_3_a1
ER  - 
%0 Journal Article
%A A. G. Sergeev
%T Adiabatic Limit for Some Nonlinear Equations of Gauge Field Theory
%J Contemporary Mathematics. Fundamental Directions
%D 2003
%P 33-42
%V 3
%U http://geodesic.mathdoc.fr/item/CMFD_2003_3_a1/
%G ru
%F CMFD_2003_3_a1
A. G. Sergeev. Adiabatic Limit for Some Nonlinear Equations of Gauge Field Theory. Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Differential and Functional-Differential Equations — Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11–17 August, 2002). Part 3, Tome 3 (2003), pp. 33-42. http://geodesic.mathdoc.fr/item/CMFD_2003_3_a1/

[S-Che] Sergeev A. G., Chechin S. V., “O rasseyanii medlenno dvizhuschikhsya vikhrei v abelevoi $(2+1)$-mernoi modeli Khiggsa”, Teor. i mat. fiz., 85 (1990), 397–411 | MR

[J-T] Jaffe A., Taubes C. H., Vortices and monopoles, Birkhäuser, Boston, 1980 | MR | Zbl

[Ma] Manton N. S., “A remark on the scattering of BPS monopoles”, Phys. Lett. B, 110 (1982), 54–56 | DOI | MR | Zbl

[Stu1] Stuart D., “Dynamics of Abelian Higgs vortices in the near Bogomolny regime”, Commun. Math. Phys., 159 (1994), 51–91 | DOI | MR | Zbl

[Stu2] Stuart D., “Periodic solutions of the Abelian Higgs model and rigid rotation of vortices”, Geom. Funct. Anal., 9 (1999), 568–595 | DOI | MR | Zbl

[T1] Taubes C. H., “SW $\Rightarrow$ Gr: From the Seiberg–Witten equations to pseudo-holomorphic curves”, J. Am. Math. Soc., 9 (1996), 845–918 | DOI | MR | Zbl

[T2] Taubes C. H., “Gr $\Rightarrow$ SW: From pseudo-holomorphic curves to Seiberg–Witten solutions”, J. Differ. Geom., 51 (1999), 203–334 | MR | Zbl