Adiabatic Limit for Some Nonlinear Equations of Gauge Field Theory
Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Differential and Functional-Differential Equations — Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11–17 August, 2002). Part 3, Tome 3 (2003), pp. 33-42
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the adiabatic limit for nonlinear dynamic equations of gauge field theory. Our main example of such equations is given by the Abelian $(2+1)$-dimensional Higgs model. We show next that the Taubes correspondence, which assigns pseudoholomorphic curves to solutions of Seiberg–Witten equations on symplectic 4-manifolds, may be interpreted as a complex analogue of the adiabatic limit construction in the $(2+1)$-dimensional case.
@article{CMFD_2003_3_a1,
author = {A. G. Sergeev},
title = {Adiabatic {Limit} for {Some} {Nonlinear} {Equations} of {Gauge} {Field} {Theory}},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {33--42},
publisher = {mathdoc},
volume = {3},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2003_3_a1/}
}
A. G. Sergeev. Adiabatic Limit for Some Nonlinear Equations of Gauge Field Theory. Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Differential and Functional-Differential Equations — Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11–17 August, 2002). Part 3, Tome 3 (2003), pp. 33-42. http://geodesic.mathdoc.fr/item/CMFD_2003_3_a1/