Stokes Cocycle and Differential Galois Groups
Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Differential and Functional-Differential Equations — Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11–17 August, 2002). Part 2, Tome 2 (2003), pp. 103-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

The classification of germs of ordinary linear differential systems with meromorphic coefficients at 0 under convergent gauge transformations and fixed normal form is essentially given by the non-Abelian 1-cohomology set of Malgrange–Sibuya. (Germs themselves are actually classified by a quotient of this set.) It is known that there exists a natural isomorphism $h$ between a unipotent Lie group (called the Stokes group) and the 1-cohomology set of Malgrange–Sibuya; the inverse map which consists of choosing, in each cohomology class, a special cocycle called a Stokes cocycle is proved to be natural and constructive. We survey here the definition of the Stokes cocycle and give a combinatorial proof for the bijectivity of $h$. We state some consequences of this result, such as Ramis, density theorem in linear differential Galois theory; we note that such a proof based on the Stokes cocycle theorem and the Tannakian theory does not require any theory of (multi-)summation.
@article{CMFD_2003_2_a6,
     author = {M. Loday-Richaud},
     title = {Stokes {Cocycle} and {Differential} {Galois} {Groups}},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {103--115},
     publisher = {mathdoc},
     volume = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2003_2_a6/}
}
TY  - JOUR
AU  - M. Loday-Richaud
TI  - Stokes Cocycle and Differential Galois Groups
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2003
SP  - 103
EP  - 115
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2003_2_a6/
LA  - ru
ID  - CMFD_2003_2_a6
ER  - 
%0 Journal Article
%A M. Loday-Richaud
%T Stokes Cocycle and Differential Galois Groups
%J Contemporary Mathematics. Fundamental Directions
%D 2003
%P 103-115
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2003_2_a6/
%G ru
%F CMFD_2003_2_a6
M. Loday-Richaud. Stokes Cocycle and Differential Galois Groups. Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Differential and Functional-Differential Equations — Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11–17 August, 2002). Part 2, Tome 2 (2003), pp. 103-115. http://geodesic.mathdoc.fr/item/CMFD_2003_2_a6/

[BV89] Babbitt D. G., Varadarajan V. S., “Local moduli for meromorphic differential equations”, Astérisque, 1989, 169–170 | MR | Zbl

[BJL79] Balser W., Jurkat W. B., Lutz D. A., “A general theory of invariants for meromorphic differential equations; Part II, Proper invariants”, Funkc. Ekvacioj, Ser. Int., 22 (1979), 257–283 | MR | Zbl

[F57] Frenkel J., “Cohomologie non abélienne et espaces fibrés”, Bull. Soc. Math. Fr., 85 (1957), 135–220 | MR | Zbl

[L-R90] Loday-Richaud M., “Introduction à la multisommabilité”, Gaz. Math., Soc. Math. Fr., 44 (1990), 41–63 | MR | Zbl

[L-R91] Loday-Richaud M., Classification méromorphe locale des sytèmes différentiels linéaires méromorphes: phénomène de Stokes et applications, Thèse d 'Etat, Orsay, 1991

[L-R94] Loday-Richaud M., “Stokes phenomenon, multisummability and differential Galois groups”, Ann. Inst. Fourier, 44:3 (1994), 849–906 | MR | Zbl

[L-R95] Loday-Richaud M., “Factorisation des solutions de systèmes différentiels linéaires”, V knige: Fernandez J. M. (red.), Coll. Medina 95: Ecuaciones diferenciales — Singularidades, Universidad de Valladolid, 1995, 197–212

[M74] Malgrange B., “Sur les points singuliers des équations différentielles”, Enseign. Math., II Sér., 20 (1974), 147–176 | MR | Zbl

[M79] Malgrange B., “Remarques sur les équations différentielles à points singuliers irréguliers”, Lect. Notes Math., 712, 1979, 77–86 | MR | Zbl

[Mal] Malgrange B., Equations différentielles à coefficients polynomiaux, Prog. Math., 1991 | MR

[MR92] Malgrange B., Ramis J.-P., “Fonctions multisommables”, Ann. Inst. Fourier, 42 (1992), 353–368 | MR | Zbl

[MR91] Martinet J., Ramis J.-P., “Elementary acceleration and multisummability”, Ann. Inst. Henri Poincaré, Phys. Théor., 54:4 (1991), 331–401 | MR | Zbl

[vdPS] van der Put M., Singer M. F., Galois theory of linear differential equations, Grundlehren der mathematischen Wissenschaften, Springer | Zbl

[R85] Ramis J.-P., “Phénomène de Stokes et resommation”, Notes C. R. Acad. Sc. Paris, Sér. 1, 301:4 (1985), 99–102 | MR | Zbl

[RS89] Ramis J.-P., Sibuya Y., “Hukuhara domains and fundamental existence and uniqueness theorems for asymptotic solutions of Gevrey type”, Asymptotic Anal., 2 (1989), 39–94 | MR | Zbl

[Sib] Sibuya Y., Linear differential equations in the complex domain: problems of analytic continuation, Transl. Math. Monogr., 82, 1990 | MR | Zbl

[Was] Wasow W., Asymptotic expansions for ordinary differential equations, Interscience, New York, 1965 ; Reprint, R. E. Krieger Publishing Co, Inc., 1976 | MR | Zbl