Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2003_2_a0, author = {S. Yu. Dobrokhotov and E. S. Semenov and B. Tirozzi}, title = {Hugoni\'ot--Maslov {Chains} for {Singular} {Vortical} {Solutions} to {Quasilinear} {Hyperbolic} {Systems} and {Typhoon} {Trajectory}}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {5--44}, publisher = {mathdoc}, volume = {2}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2003_2_a0/} }
TY - JOUR AU - S. Yu. Dobrokhotov AU - E. S. Semenov AU - B. Tirozzi TI - Hugoni\'ot--Maslov Chains for Singular Vortical Solutions to Quasilinear Hyperbolic Systems and Typhoon Trajectory JO - Contemporary Mathematics. Fundamental Directions PY - 2003 SP - 5 EP - 44 VL - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2003_2_a0/ LA - ru ID - CMFD_2003_2_a0 ER -
%0 Journal Article %A S. Yu. Dobrokhotov %A E. S. Semenov %A B. Tirozzi %T Hugoni\'ot--Maslov Chains for Singular Vortical Solutions to Quasilinear Hyperbolic Systems and Typhoon Trajectory %J Contemporary Mathematics. Fundamental Directions %D 2003 %P 5-44 %V 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2003_2_a0/ %G ru %F CMFD_2003_2_a0
S. Yu. Dobrokhotov; E. S. Semenov; B. Tirozzi. Hugoni\'ot--Maslov Chains for Singular Vortical Solutions to Quasilinear Hyperbolic Systems and Typhoon Trajectory. Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Differential and Functional-Differential Equations — Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11–17 August, 2002). Part 2, Tome 2 (2003), pp. 5-44. http://geodesic.mathdoc.fr/item/CMFD_2003_2_a0/
[1] Arnold V. I., Kozlov V. V., Neishtadt A. I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, Itogi nauki i tekhn., ser. Sovr. probl. mat., Fundam. napr., 3, VINITI, M., 1985 | MR
[2] Babich V. M., “Fundamentalnoe reshenie giperbolicheskikh uravnenii s peremennymi koeffitsientami”, Mat. cbornik, 52(94):2 (1960), 709–738 | Zbl
[3] Bulatov V. V., Vladimirov Yu. V., Danilov V. G., Dobrokhotov S. Yu., “Primer vychisleniya «glaza» taifuna na osnove gipotezy V. P. Maslova”, Dokl. RAN, 338:1 (1994), 102–105 | MR | Zbl
[4] Vishik M. I., Fursikov A. V., Matematicheskie problemy statisticheskoi mekhaniki, Nauka, M., 1980 | MR | Zbl
[5] Gordin V. A., Matematicheskie zadachi gidrodinamicheskogo prognoza pogody: analiticheskie aspekty, Gidrometeoizdat, L., 1987 | MR
[6] Grinfeld M. A., “Luchevoi metod vychisleniya intensivnosti volnovykh frontov v nelineinom uprugom materiale”, Prikl. mat. i mekh., 42:5 (1978), 883–898 | MR
[7] Danilov V. G., Maslov V. P., Shelkovich V. M., “Algebry osobennostei obobschennykh reshenii strogo giperbolicheskikh sistem kvazilineinykh uravnenii pervogo poryadka”, Teor. i mat. fiz., 114:1 (1998), 3–55 | MR | Zbl
[8] Dobrokhotov S. Yu., “Tsepochki Gyugonio–Maslova dlya traektorii tochechnykh vikhrevykh osobennostei uravnenii melkoi vody i uravnenie Khilla”, Dokl. RAN, 354:5 (1997), 600–603 | MR | Zbl
[9] Dobrokhotov S. Yu., “Reduktsiya k uravneniyu Khilla tsepochki Gyugonio–Maslova dlya traektorii uedinennykh vikhrei uravnenii melkoi vody”, Teor. i mat. fiz., 112:1 (1997), 47–66 | MR | Zbl
[10] Dobrokhotov S. Yu., Pankrashkin K. V., Semenov E. S., “O gipoteze Maslova o strukture slabykh tochechnykh osobennostei uravnenii melkoi vody”, Dokl. RAN, 379:2 (2001), 173–176 | MR
[11] Dobrokhotov S. Yu., Tirotstsi B., “O svoistve gamiltonovosti ukorochennykh tsepochek Gyugonio–Maslova dlya traektorii mezomasshtabnykh vikhrei”, Dokl. RAN, 384:6 (2002), 741–746 | MR | Zbl
[12] Dolzhanskii F. V., Krymov V. A., Manin D. Yu., “Ustoichivost i vikhrevye struktury kvazidvumernykh sdvigovykh techenii”, Usp. fiz. nauk, 160:7 (1990), 1–47
[13] Dubrovin B. A., Novikov S. P., “Gamiltonov formalizm odnomernykh sistem gidrodinamicheskogo tipa i metod usredneniya Bogolyubova–Uizema”, Dokl. AN SSSR, 270:4 (1983), 781–785 | MR | Zbl
[14] Egorov Yu. V., “K teorii obobschennykh funktsii”, Usp. mat. nauk, 45:5 (1990), 3–40 | Zbl
[15] Zhikharev V. N., O neobkhodimykh usloviyakh suschestvovaniya i edinstvennosti tipa resheniya so slaboi rasprostranyayuscheisya osobennostyu, sosredotochennoi v tochke, dlya uravnenii gidrodinamiki v sluchae dvukh prostranstvennykh peremennykh, Deponirovano v VINITI, No B86, 8148, Moskva, 1986
[16] Zaitsev V. F., Polyanin A. D., Spravochnik po obyknovennym differentsialnym uravneniyam, Fizmatlit, M., 1995 | MR
[17] Zubarev D. N., “Sovremennye metody statisticheskoi teorii neravnovesnykh protsessov”, Itogi nauki i tekhn., ser. Sovr. probl. mat., 15, VINITI, M., 1980, 131–226 | MR
[18] Maslov V. P., Teoriya vozmuschenii i asimptoticheskie metody, MGU, M., 1965
[19] Maslov V. P., “O rasprostranenii udarnoi volny v izoentropicheskom nevyazkom gaze”, Itogi nauki i tekhn., ser. Sovr. probl. mat., 8, VINITI, M., 1977, 199–271
[20] Maslov V. P., “Tri algebry, otvechayuschie negladkim resheniyam sistem kvazilineinykh giperbolicheskikh uravnenii”, Usp. mat. nauk, 35:2 (1980), 252–253
[21] Maslov V. P., Omelyanov G. A., “Usloviya tipa Gyugonio dlya beskonechnouzkikh solitonov uravnenii prostykh voln”, Sib. mat. zh., 24:5 (1983), 787–795 | MR | Zbl
[22] Pedloski Dzh., Geofizicheskaya gidrodinamika, Mir, M., 1984
[23] Semenov E. S., “Ob usloviyakh Gyugonio–Maslova dlya vikhrevykh osobykh reshenii sistemy uravnenii melkoi vody”, Mat. zametki, 71:6 (2002), 902–913 | Zbl
[24] Uizem Dzh. B., Lineinye i nelineinye volny, Mir, M., 1977 | MR
[25] Yakubovich V. A., Starzhinskii V. M., Lineinye differentsialnye uravneniya s periodicheskimi koeffitsientami i ikh prilozheniya, Glavnaya redaktsiya fiz.-mat. literatury izd-va «Nauka», M., 1972, 720 pp. | MR
[26] Colombeau J. F., le Roux A. Y., “Multiplications of distributions in elasticity and hydrodynamics”, J. Math. Phys., 219 (1988), 315–319 | DOI | MR
[27] Dobrokhotov S. Yu., “Hugoniót–Maslov chains for solitary vortices of the shallow water equations, I”, Russ. J. Math. Phys., 6:2 (1999), 137–173 | MR | Zbl
[28] Dobrokhotov S. Yu., “Hugoniót–Maslov chains for solitary vortices of the shallow water equations, II”, Russ. J. Math. Phys., 6:3 (1999), 282–313 | MR | Zbl
[29] Dobrokhotov S. Yu., Pankrashkin K. V., Semenov E. S., “Proof of Maslov's conjecture about the structure of weak point singular solutions of the shallow water equations”, Russ. J. Math. Phys., 8:1 (2001), 25–54 | MR | Zbl
[30] Milnor J., Morse theory, Ann. of Math. Stud., 51, Princeton Univ. Press, Princeton, NJ, 1963 | MR | Zbl
[31] Ravindran R., Prasad P., “A new theory of shock dynamics. Part I (II)”, Appl. Math. Lett., 3:3 (1990), 77–79 | DOI | MR
[32] Reznik G. M., Grimshaw R., “Ageostrophic dynamics of an intence localized vortex on a [beta]-plane”, J. Fluid Mech., 443 (2001), 351–376 | DOI | Zbl
[33] Rogers C., Schief W. K., “Multi–component Ermakov systems: structure and linearization”, J. Math. Anal. Appl., 198:1 (1996), 194–220 | DOI | MR | Zbl
[34] Shapiro L. J., “Potential vorticity asymmetries and tropical cyclone evolution in a moist three-layer model”, J. Atm. Sc., 57:21 (1999), 3645–3662 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[35] Shugaev F. V., Shtemenko L. S., Propagation and Reflection of Shock Waves, World Scientific, Singapore, 1998 | MR | Zbl