Hugoni\'ot--Maslov Chains for Singular Vortical Solutions to Quasilinear Hyperbolic Systems and Typhoon Trajectory
Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Differential and Functional-Differential Equations — Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11–17 August, 2002). Part 2, Tome 2 (2003), pp. 5-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

According to Maslov, many 2D quasilinear systems of PDE possess only three algebras of singular solutions with properties of structural self-similarity and stability. They are the algebras of shock waves, narrow solitons, and square-root point singularities (solitary vortices). Their propagation is described by infinite chains of ODE (the Hugoniót–Maslov chains). We consider the Hugoniót–Maslov chain for the square-root point singularities of the shallow water equations. We discuss different related mathematical questions (in particular, unexpected integrability effects) as well as their possible application to the problem of typhoon dynamics.
@article{CMFD_2003_2_a0,
     author = {S. Yu. Dobrokhotov and E. S. Semenov and B. Tirozzi},
     title = {Hugoni\'ot--Maslov {Chains} for {Singular} {Vortical} {Solutions} to {Quasilinear} {Hyperbolic} {Systems} and {Typhoon} {Trajectory}},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {5--44},
     publisher = {mathdoc},
     volume = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2003_2_a0/}
}
TY  - JOUR
AU  - S. Yu. Dobrokhotov
AU  - E. S. Semenov
AU  - B. Tirozzi
TI  - Hugoni\'ot--Maslov Chains for Singular Vortical Solutions to Quasilinear Hyperbolic Systems and Typhoon Trajectory
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2003
SP  - 5
EP  - 44
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2003_2_a0/
LA  - ru
ID  - CMFD_2003_2_a0
ER  - 
%0 Journal Article
%A S. Yu. Dobrokhotov
%A E. S. Semenov
%A B. Tirozzi
%T Hugoni\'ot--Maslov Chains for Singular Vortical Solutions to Quasilinear Hyperbolic Systems and Typhoon Trajectory
%J Contemporary Mathematics. Fundamental Directions
%D 2003
%P 5-44
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2003_2_a0/
%G ru
%F CMFD_2003_2_a0
S. Yu. Dobrokhotov; E. S. Semenov; B. Tirozzi. Hugoni\'ot--Maslov Chains for Singular Vortical Solutions to Quasilinear Hyperbolic Systems and Typhoon Trajectory. Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Differential and Functional-Differential Equations — Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11–17 August, 2002). Part 2, Tome 2 (2003), pp. 5-44. http://geodesic.mathdoc.fr/item/CMFD_2003_2_a0/

[1] Arnold V. I., Kozlov V. V., Neishtadt A. I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, Itogi nauki i tekhn., ser. Sovr. probl. mat., Fundam. napr., 3, VINITI, M., 1985 | MR

[2] Babich V. M., “Fundamentalnoe reshenie giperbolicheskikh uravnenii s peremennymi koeffitsientami”, Mat. cbornik, 52(94):2 (1960), 709–738 | Zbl

[3] Bulatov V. V., Vladimirov Yu. V., Danilov V. G., Dobrokhotov S. Yu., “Primer vychisleniya «glaza» taifuna na osnove gipotezy V. P. Maslova”, Dokl. RAN, 338:1 (1994), 102–105 | MR | Zbl

[4] Vishik M. I., Fursikov A. V., Matematicheskie problemy statisticheskoi mekhaniki, Nauka, M., 1980 | MR | Zbl

[5] Gordin V. A., Matematicheskie zadachi gidrodinamicheskogo prognoza pogody: analiticheskie aspekty, Gidrometeoizdat, L., 1987 | MR

[6] Grinfeld M. A., “Luchevoi metod vychisleniya intensivnosti volnovykh frontov v nelineinom uprugom materiale”, Prikl. mat. i mekh., 42:5 (1978), 883–898 | MR

[7] Danilov V. G., Maslov V. P., Shelkovich V. M., “Algebry osobennostei obobschennykh reshenii strogo giperbolicheskikh sistem kvazilineinykh uravnenii pervogo poryadka”, Teor. i mat. fiz., 114:1 (1998), 3–55 | MR | Zbl

[8] Dobrokhotov S. Yu., “Tsepochki Gyugonio–Maslova dlya traektorii tochechnykh vikhrevykh osobennostei uravnenii melkoi vody i uravnenie Khilla”, Dokl. RAN, 354:5 (1997), 600–603 | MR | Zbl

[9] Dobrokhotov S. Yu., “Reduktsiya k uravneniyu Khilla tsepochki Gyugonio–Maslova dlya traektorii uedinennykh vikhrei uravnenii melkoi vody”, Teor. i mat. fiz., 112:1 (1997), 47–66 | MR | Zbl

[10] Dobrokhotov S. Yu., Pankrashkin K. V., Semenov E. S., “O gipoteze Maslova o strukture slabykh tochechnykh osobennostei uravnenii melkoi vody”, Dokl. RAN, 379:2 (2001), 173–176 | MR

[11] Dobrokhotov S. Yu., Tirotstsi B., “O svoistve gamiltonovosti ukorochennykh tsepochek Gyugonio–Maslova dlya traektorii mezomasshtabnykh vikhrei”, Dokl. RAN, 384:6 (2002), 741–746 | MR | Zbl

[12] Dolzhanskii F. V., Krymov V. A., Manin D. Yu., “Ustoichivost i vikhrevye struktury kvazidvumernykh sdvigovykh techenii”, Usp. fiz. nauk, 160:7 (1990), 1–47

[13] Dubrovin B. A., Novikov S. P., “Gamiltonov formalizm odnomernykh sistem gidrodinamicheskogo tipa i metod usredneniya Bogolyubova–Uizema”, Dokl. AN SSSR, 270:4 (1983), 781–785 | MR | Zbl

[14] Egorov Yu. V., “K teorii obobschennykh funktsii”, Usp. mat. nauk, 45:5 (1990), 3–40 | Zbl

[15] Zhikharev V. N., O neobkhodimykh usloviyakh suschestvovaniya i edinstvennosti tipa resheniya so slaboi rasprostranyayuscheisya osobennostyu, sosredotochennoi v tochke, dlya uravnenii gidrodinamiki v sluchae dvukh prostranstvennykh peremennykh, Deponirovano v VINITI, No B86, 8148, Moskva, 1986

[16] Zaitsev V. F., Polyanin A. D., Spravochnik po obyknovennym differentsialnym uravneniyam, Fizmatlit, M., 1995 | MR

[17] Zubarev D. N., “Sovremennye metody statisticheskoi teorii neravnovesnykh protsessov”, Itogi nauki i tekhn., ser. Sovr. probl. mat., 15, VINITI, M., 1980, 131–226 | MR

[18] Maslov V. P., Teoriya vozmuschenii i asimptoticheskie metody, MGU, M., 1965

[19] Maslov V. P., “O rasprostranenii udarnoi volny v izoentropicheskom nevyazkom gaze”, Itogi nauki i tekhn., ser. Sovr. probl. mat., 8, VINITI, M., 1977, 199–271

[20] Maslov V. P., “Tri algebry, otvechayuschie negladkim resheniyam sistem kvazilineinykh giperbolicheskikh uravnenii”, Usp. mat. nauk, 35:2 (1980), 252–253

[21] Maslov V. P., Omelyanov G. A., “Usloviya tipa Gyugonio dlya beskonechnouzkikh solitonov uravnenii prostykh voln”, Sib. mat. zh., 24:5 (1983), 787–795 | MR | Zbl

[22] Pedloski Dzh., Geofizicheskaya gidrodinamika, Mir, M., 1984

[23] Semenov E. S., “Ob usloviyakh Gyugonio–Maslova dlya vikhrevykh osobykh reshenii sistemy uravnenii melkoi vody”, Mat. zametki, 71:6 (2002), 902–913 | Zbl

[24] Uizem Dzh. B., Lineinye i nelineinye volny, Mir, M., 1977 | MR

[25] Yakubovich V. A., Starzhinskii V. M., Lineinye differentsialnye uravneniya s periodicheskimi koeffitsientami i ikh prilozheniya, Glavnaya redaktsiya fiz.-mat. literatury izd-va «Nauka», M., 1972, 720 pp. | MR

[26] Colombeau J. F., le Roux A. Y., “Multiplications of distributions in elasticity and hydrodynamics”, J. Math. Phys., 219 (1988), 315–319 | DOI | MR

[27] Dobrokhotov S. Yu., “Hugoniót–Maslov chains for solitary vortices of the shallow water equations, I”, Russ. J. Math. Phys., 6:2 (1999), 137–173 | MR | Zbl

[28] Dobrokhotov S. Yu., “Hugoniót–Maslov chains for solitary vortices of the shallow water equations, II”, Russ. J. Math. Phys., 6:3 (1999), 282–313 | MR | Zbl

[29] Dobrokhotov S. Yu., Pankrashkin K. V., Semenov E. S., “Proof of Maslov's conjecture about the structure of weak point singular solutions of the shallow water equations”, Russ. J. Math. Phys., 8:1 (2001), 25–54 | MR | Zbl

[30] Milnor J., Morse theory, Ann. of Math. Stud., 51, Princeton Univ. Press, Princeton, NJ, 1963 | MR | Zbl

[31] Ravindran R., Prasad P., “A new theory of shock dynamics. Part I (II)”, Appl. Math. Lett., 3:3 (1990), 77–79 | DOI | MR

[32] Reznik G. M., Grimshaw R., “Ageostrophic dynamics of an intence localized vortex on a [beta]-plane”, J. Fluid Mech., 443 (2001), 351–376 | DOI | Zbl

[33] Rogers C., Schief W. K., “Multi–component Ermakov systems: structure and linearization”, J. Math. Anal. Appl., 198:1 (1996), 194–220 | DOI | MR | Zbl

[34] Shapiro L. J., “Potential vorticity asymmetries and tropical cyclone evolution in a moist three-layer model”, J. Atm. Sc., 57:21 (1999), 3645–3662 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[35] Shugaev F. V., Shtemenko L. S., Propagation and Reflection of Shock Waves, World Scientific, Singapore, 1998 | MR | Zbl