Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2003_1_a3, author = {H. Walther}, title = {Smoothness {Properties} of {Semiflows} for {Differential} {Equations} with {State-Dependent} {Delays}}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {40--55}, publisher = {mathdoc}, volume = {1}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2003_1_a3/} }
TY - JOUR AU - H. Walther TI - Smoothness Properties of Semiflows for Differential Equations with State-Dependent Delays JO - Contemporary Mathematics. Fundamental Directions PY - 2003 SP - 40 EP - 55 VL - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2003_1_a3/ LA - ru ID - CMFD_2003_1_a3 ER -
H. Walther. Smoothness Properties of Semiflows for Differential Equations with State-Dependent Delays. Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Differential and Functional-Differential Equations — Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11–17 August, 2002). Part 1, Tome 1 (2003), pp. 40-55. http://geodesic.mathdoc.fr/item/CMFD_2003_1_a3/
[1] Cooke K., Huang W., “On the problem of linearization for state-dependent delay differential equations”, Proc. Am. Math. Soc., 124 (1996), 1417–1426 | DOI | MR | Zbl
[2] Diekmann O., van Gils S., Lunel S. M. V., Walther H. O., Delay equations: functional-, complex-, and nonlinear analysis, Springer, New York, 1995 | MR | Zbl
[3] Hale J. K., Lunel S. M. V., Introduction to functional differential equations, Springer, New York, 1993 | MR
[4] Krisztin T., An unstable manifold near a hyperbolic equilibrium for a class of differential equations with state-dependent delay, Preprint, 2000
[5] Lang S., Introduction to differentiable manifolds, Wiley, New York, 1962 | MR
[6] Louihi M., Hbid M. L., Arino O., “Semigroup properties and the Crandall-Liggett approximation for a class of differential equations with state-dependent delays”, J. Differ. Equations, 181 (2002), 1–30 | DOI | MR | Zbl
[7] Mallet-Paret J., Nussbaum R. D., Paraskevopoulos P., “Periodic solutions for functional differential equations with multiple state-dependent time lags”, Topol. Methods Nonlinear Anal., 3 (1994), 101–162 | MR | Zbl
[8] Walther H. O., “Stable periodic motion of a system with state-dependent delay”, Differ. Integral Equ., 15 (2002), 923–944 | MR | Zbl
[9] Walther H. O., The solution manifold and $C^1$-smoothness for differential equations with state dependent delay, Submitted