Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2003_1_a0, author = {W. Balser}, title = {Summability of {Formal} {Power-Series} {Solutions} of {Partial} {Differential} {Equations} with {Constant} {Coefficients}}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {5--17}, publisher = {mathdoc}, volume = {1}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2003_1_a0/} }
TY - JOUR AU - W. Balser TI - Summability of Formal Power-Series Solutions of Partial Differential Equations with Constant Coefficients JO - Contemporary Mathematics. Fundamental Directions PY - 2003 SP - 5 EP - 17 VL - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2003_1_a0/ LA - ru ID - CMFD_2003_1_a0 ER -
W. Balser. Summability of Formal Power-Series Solutions of Partial Differential Equations with Constant Coefficients. Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Differential and Functional-Differential Equations — Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11–17 August, 2002). Part 1, Tome 1 (2003), pp. 5-17. http://geodesic.mathdoc.fr/item/CMFD_2003_1_a0/
[1] Balser W., “Divergent solutions of the heat equation: on an article of Lutz, Miyake and Schäfke”, Pac. J. Math., 188 (1999), 53–63 | DOI | MR | Zbl
[2] Balser W., Formal power series and linear systems of meromorphic ordinary differential equations, Springer-Verlag, New York, 2000 | MR | Zbl
[3] Balser W., Miyake M., “Summability of formal solutions of certain partial differential equations”, Acta Sci. Math., 65 (1999), 543–551 | MR | Zbl
[4] Hibino M., “Divergence property of formal solutions for singular first order linear partial differential equations”, Publ. Res. Inst. Math. Sci., 35 (1999), 893–919 | DOI | MR | Zbl
[5] Lutz D. A., Miyake M., Schäfke R., “On the Borel summability of divergent solutions of the heat equation”, Nagoya Math. J., 154 (1999), 1–29 | MR | Zbl
[6] Miyake M., “Newton polygons and formal Gevrey indices in the Cauchy–Goursat–Fuchs type equations”, J. Math. Soc. Japan, 43 (1991), 305–330 | DOI | MR | Zbl
[7] Miyake M., “An operator $l=ai-d_t^jd_x^{-j-\alpha}-d_t^{-j}d_x^{j+\alpha}$ and its nature in Gevrey functions”, Tsukuba J. Math., 17 (1993), 83–98 | MR
[8] Miyake M., “Borel summability of divergent solutions of the Cauchy problem to non-Kovaleskian equations”, Partial differential equations and their applications, eds. Hua C., Rodino L., World Scientific Publ., Singapore, 1999, 225–239 | MR | Zbl
[9] Miyake M., Hashimoto Y., “Newton polygons and Gevrey indices for linear partial differential operators”, Nagoya Math. J., 128 (1992), 15–47 | MR | Zbl
[10] Miyake M., Ichinobe K., “On the Borel summability of divergent solutions of parabolic type equations and Barnes generalized hypergeometric functions”, RIMS Kokyuroku, 1158 (2000), 43–57 | MR | Zbl
[11] Miyake M., Yoshino M., “Toeplitz operators and an index theorem for differential operators on Gevrey spaces”, Funkc. Ekvacioj. Ser. Int., 38 (1995), 329–342 | MR | Zbl
[12] Ouchi S., Asymptotic expansion of singular solutions and the characteristic polygon of linear partial differential equations in the complex domain, Manuscript
[13] Ouchi S., “Formal solutions with Gevrey type estimates of nonlinear partial differential equations”, J. Math. Sci., Tokyo, 1 (1994), 205–237 | MR | Zbl
[14] Ouchi S., “Singular solutions with asymptotic expansion of linear partial differential equations in the complex domain”, RIMS Kokyuroku, 34 (1998), 291–311 | DOI | MR | Zbl
[15] Pliś M. E., Ziemian B., “Borel resummation of formal solutions to nonlinear Laplace equations in 2 variables”, Ann. Pol. Math., 67 (1997), 31–41 | MR | Zbl
[16] Ramis J.-P., “Les séries $k$-sommable et leurs applications”, Lect. Notes Phys., 126 (1980), 178–199 | DOI | MR