A priori estimates of the maximal utility in Slutskii’s theory
Contemporary Mathematics and Its Applications, Tome 95 (2015), pp. 77-82
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we examine stability conditions of stationary points of a dynamical system in an example of simulation of utility functions that determine a control mechanism of purchasing goods. Applying the minimization method for projections of subtangents (the subtangential method) at points of the dynamical curve on the utility axis, we propose a method of determining the restrictions on goods, which is most convenient in the control context.
@article{CMA_2015_95_a7,
author = {Yu. Ya. Agranovich and N. V. Kontsevaya and V. L. Khatskevich},
title = {A priori estimates of the maximal utility in {Slutskii{\textquoteright}s} theory},
journal = {Contemporary Mathematics and Its Applications},
pages = {77--82},
publisher = {mathdoc},
volume = {95},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMA_2015_95_a7/}
}
TY - JOUR AU - Yu. Ya. Agranovich AU - N. V. Kontsevaya AU - V. L. Khatskevich TI - A priori estimates of the maximal utility in Slutskii’s theory JO - Contemporary Mathematics and Its Applications PY - 2015 SP - 77 EP - 82 VL - 95 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMA_2015_95_a7/ LA - ru ID - CMA_2015_95_a7 ER -
%0 Journal Article %A Yu. Ya. Agranovich %A N. V. Kontsevaya %A V. L. Khatskevich %T A priori estimates of the maximal utility in Slutskii’s theory %J Contemporary Mathematics and Its Applications %D 2015 %P 77-82 %V 95 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMA_2015_95_a7/ %G ru %F CMA_2015_95_a7
Yu. Ya. Agranovich; N. V. Kontsevaya; V. L. Khatskevich. A priori estimates of the maximal utility in Slutskii’s theory. Contemporary Mathematics and Its Applications, Tome 95 (2015), pp. 77-82. http://geodesic.mathdoc.fr/item/CMA_2015_95_a7/