A priori estimates of the maximal utility in Slutskii’s theory
Contemporary Mathematics and Its Applications, Tome 95 (2015), pp. 77-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine stability conditions of stationary points of a dynamical system in an example of simulation of utility functions that determine a control mechanism of purchasing goods. Applying the minimization method for projections of subtangents (the subtangential method) at points of the dynamical curve on the utility axis, we propose a method of determining the restrictions on goods, which is most convenient in the control context.
@article{CMA_2015_95_a7,
     author = {Yu. Ya. Agranovich and N. V. Kontsevaya and V. L. Khatskevich},
     title = {A priori estimates of the maximal utility in {Slutskii{\textquoteright}s} theory},
     journal = {Contemporary Mathematics and Its Applications},
     pages = {77--82},
     publisher = {mathdoc},
     volume = {95},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMA_2015_95_a7/}
}
TY  - JOUR
AU  - Yu. Ya. Agranovich
AU  - N. V. Kontsevaya
AU  - V. L. Khatskevich
TI  - A priori estimates of the maximal utility in Slutskii’s theory
JO  - Contemporary Mathematics and Its Applications
PY  - 2015
SP  - 77
EP  - 82
VL  - 95
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMA_2015_95_a7/
LA  - ru
ID  - CMA_2015_95_a7
ER  - 
%0 Journal Article
%A Yu. Ya. Agranovich
%A N. V. Kontsevaya
%A V. L. Khatskevich
%T A priori estimates of the maximal utility in Slutskii’s theory
%J Contemporary Mathematics and Its Applications
%D 2015
%P 77-82
%V 95
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMA_2015_95_a7/
%G ru
%F CMA_2015_95_a7
Yu. Ya. Agranovich; N. V. Kontsevaya; V. L. Khatskevich. A priori estimates of the maximal utility in Slutskii’s theory. Contemporary Mathematics and Its Applications, Tome 95 (2015), pp. 77-82. http://geodesic.mathdoc.fr/item/CMA_2015_95_a7/