Problem of selecting an optimal portfolio with a probabilistic risk function
Contemporary Mathematics and Its Applications, Tome 95 (2015), pp. 3-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine the problem of finding an optimal portfolio of securities by using the probability function of portfolio risk as a constraint. We obtain the value of the risk coefficient for which the problem of maximizing the expectation of the portfolio return with a probabilistic risk function constraint is equivalent to the maximizing the linear convolution of the criteria “expectation—variance”.
@article{CMA_2015_95_a0,
     author = {V. A. Gorelik and T. V. Zolotova},
     title = {Problem of selecting an optimal portfolio with a probabilistic risk function},
     journal = {Contemporary Mathematics and Its Applications},
     pages = {3--10},
     publisher = {mathdoc},
     volume = {95},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMA_2015_95_a0/}
}
TY  - JOUR
AU  - V. A. Gorelik
AU  - T. V. Zolotova
TI  - Problem of selecting an optimal portfolio with a probabilistic risk function
JO  - Contemporary Mathematics and Its Applications
PY  - 2015
SP  - 3
EP  - 10
VL  - 95
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMA_2015_95_a0/
LA  - ru
ID  - CMA_2015_95_a0
ER  - 
%0 Journal Article
%A V. A. Gorelik
%A T. V. Zolotova
%T Problem of selecting an optimal portfolio with a probabilistic risk function
%J Contemporary Mathematics and Its Applications
%D 2015
%P 3-10
%V 95
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMA_2015_95_a0/
%G ru
%F CMA_2015_95_a0
V. A. Gorelik; T. V. Zolotova. Problem of selecting an optimal portfolio with a probabilistic risk function. Contemporary Mathematics and Its Applications, Tome 95 (2015), pp. 3-10. http://geodesic.mathdoc.fr/item/CMA_2015_95_a0/