Simulation of polymethyl methacrylate and hexamine sublimation with high temperature nitrogen in an axisymmetrical formulation
Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 4, pp. 650-657.

Voir la notice de l'article provenant de la source Math-Net.Ru

A computational technique has been created for modeling the sublimation of solid material in a high-temperature gas flow. The mathematical model and numerical algorithm have been verified using experimental data on the sublimation of hexamine at different gas temperatures at the reactor inlet. It is shown that the curvature of the sublimation front, on the one hand, is due to the presence of a boundary layer on the channel wall, and on the other hand, it can occur when heat transfer is intensified due to a decrease in the initial diameter of hexamine particles in the backfill. Parametric calculations of the dynamics of flow in a porous medium during the sublimation of polymethyl methacrylate and hexamine were performed. It is shown that different types of boundary conditions lead to different dynamics of the temperature behavior at the channel outlet.
Keywords: gas generator, gasification, porous medium, mathematical modeling.
@article{CHFMJ_2024_9_4_a9,
     author = {I. A. Bedarev and V. M. Temerbekov},
     title = {Simulation of polymethyl methacrylate and hexamine sublimation with high temperature nitrogen in an axisymmetrical formulation},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {650--657},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a9/}
}
TY  - JOUR
AU  - I. A. Bedarev
AU  - V. M. Temerbekov
TI  - Simulation of polymethyl methacrylate and hexamine sublimation with high temperature nitrogen in an axisymmetrical formulation
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2024
SP  - 650
EP  - 657
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a9/
LA  - ru
ID  - CHFMJ_2024_9_4_a9
ER  - 
%0 Journal Article
%A I. A. Bedarev
%A V. M. Temerbekov
%T Simulation of polymethyl methacrylate and hexamine sublimation with high temperature nitrogen in an axisymmetrical formulation
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2024
%P 650-657
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a9/
%G ru
%F CHFMJ_2024_9_4_a9
I. A. Bedarev; V. M. Temerbekov. Simulation of polymethyl methacrylate and hexamine sublimation with high temperature nitrogen in an axisymmetrical formulation. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 4, pp. 650-657. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a9/

[1] Krishnan S., Rajesh K. K., “Experimental investigation of erosive burning of composite propellants under supersonic crossflows”, International Journal of Energetic Materials and Chemical Propulsion, 5:1–6 (2002), 316–325

[2] Srinivasan R., Raghunandan B. N., “Experiments on thermal response of low aspect ratio packed beds at high Reynolds numbers with varying inflow temperatures”, Experimental Thermal and Fluid Science, 44 (2012), 323–333

[3] Karpov A. I., Lesthev A. Y., Lipanov A. M., Lesthev G. A., “Production of the fire extinguishing mixture by solid propellant propulsion”, Journal of Less Prevention in the Process Industries, 26 (2013), 338–343

[4] Engelen K., Lefebvre M. H., De Ruyek J., “Chemical formulation of solod propellant for specific gas generators”, Twenty-fourth International Pyrotechnics Seminar, 1998, 203–216

[5] Hong G. C., Murugesan S., Kim S., et al., “A functional on-clip pressure generator using solod chemical propellant lab-on-a-chip”, Lab on a Chip, 3 (2003), 281–286

[6] Kim A., Crampton G., “Explosion suppression with hybrid gas generator system”, Progress in Safety Science and Technjljgy, 7 (2008), 891–895

[7] Vaulin S.D., Kalinkin A.M., Kovin S.G., et al., Low-temperature gas generators using solid fuel, Institute of Problems of Mathematics of Ural Branch of the Russian Academy of Sciences, Izhevsk, 2006 (In Russ.)

[8] Aksyonenko D.D., Vaulin S.D., Zezin V.G., et al., Theoretical and experimental study of low-temperature gas generators, Institute of Problems of Mathematics of Ural Branch of the Russian Academy of Sciences, Izhevsk, 2008 (In Russ.)

[9] Yanovskiy L.S., Baykov A.V., Averkov I.S., “Estimation of possibility of creating a solid fuel air breathing jet engine with active cooling system”, Thermal Processes in Engineering, 8:3 (2016), 111–116

[10] Salgansky E. A., Lutsenko N. A., “Effect of solid fuel characteristics on operating conditions of low-temperature gas generator for high-speed flying vehicle”, Aerospace Science and Technology, 109 (2021), 1–6

[11] Salgansky E.A., Lutsenko N.A., Yanovsky L.S., “Modeling of gasification of a solid porous energetic material in a low-temperature aircraft gas generator”, Combustion, Explosion and Shock Waves, 58:3 (2022), 312–317

[12] Borovik K.G., Lutsenko N.A., Fetsov S.S., Salgansky E. A., “Simulation of gasification of a two-layer porous polymer in a low-temperature gas generator”, Combustion, Explosion and Shock Waves, 59:4 (2023), 44–51

[13] Salganskaya M. V., Zaichenko A. Yu., Podlesniy D. N., Tsvetkov M. V., Tsvetkova Yu. Yu., Salgansky E. A., “Experimental study of hexamethylenetetramine gasification at different temperatures of gas flow”, Acta Astronautica, 204 (2023), 682–685

[14] Bedarev I.A., Temerbekov V.M., “Numerical modeling of the solid fuel sublimation in a high-temperature gas flow in the continuum approach and with boundary separation between two media”, Chelyabinsk Physical and Mathematical Journal, 7:3 (2022), 326–340