Global stability and estimates for solutions in a model of population dynamics with delay
Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 4, pp. 634-649.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a model of the isolated population dynamics described by a delay differential equation. We study the case when the model has no more than two equilibrium points corresponding to the complete extinction of the population and to the constant positive population size. We indicate conditions for the right side of the equation, under which solutions are stabilized to equilibrium points for arbitrary non-negative initial data. We obtain estimates for the stabilization rate depending on the coefficients of the equation, the nonlinear function from the right side of the equation, and the function at the initial time interval. The established estimates characterize the rate of population extinction and the rate of stabilization of the population to a constant value. The results are obtained using Lyapunov–Krasovskii functionals.
Keywords: population dynamics, delay differential equation, equilibrium point, asymptotic stability, estimates for solutions, Lyapunov–Krasovskii functional.
@article{CHFMJ_2024_9_4_a8,
     author = {M. A. Skvortsova},
     title = {Global stability and estimates for solutions in a model of population dynamics with delay},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {634--649},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a8/}
}
TY  - JOUR
AU  - M. A. Skvortsova
TI  - Global stability and estimates for solutions in a model of population dynamics with delay
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2024
SP  - 634
EP  - 649
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a8/
LA  - ru
ID  - CHFMJ_2024_9_4_a8
ER  - 
%0 Journal Article
%A M. A. Skvortsova
%T Global stability and estimates for solutions in a model of population dynamics with delay
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2024
%P 634-649
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a8/
%G ru
%F CHFMJ_2024_9_4_a8
M. A. Skvortsova. Global stability and estimates for solutions in a model of population dynamics with delay. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 4, pp. 634-649. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a8/

[1] Brauer F., Castillo-Chavez C., Mathematical Models in Population Biology and Epidemiology, Springer, New York, 2001

[2] Krasovskii N.N., Stability of Motion, Applications of Lyapunov’s Second Method to Differential Systems and Equations with Delay, Stanford University Press, Stanford, 1963

[3] Bellman R., Cooke K.L., Differential-Difference Equations, Academic Press, New York; London, 1963

[4] El’sgol’ts L.E., Norkin S.B., Introduction to the Theory and Application of Differential Equations with Deviating Arguments, Acad. Press, New York; London, 1973

[5] Hale J., Theory of Functional Differential Equations, Springer, New York; Heidelberg; Berlin, 1977

[6] Azbelev N.V., Maksimov V.P., Rakhmatullina L.F., Introduction to the Theory of Functional Differential Equations, Methods and Applications, Hindawi Publ. Corp., New York, 2007

[7] Kolmanovskii V. B., Myshkis A. D., Introduction to the Theory and Applications of Functional Differential equations, Kluwer Academic Publ., Dordrecht, 1999

[8] Agarwal R. P., Berezansky L., Braverman E., Domoshnitsky A., Nonoscillation Theory of Functional Differential Equations with Applications, Springer, New York, 2012

[9] Gopalsamy K., Stability and Oscillations in Delay Differential Equations of Population Dynamics, Kluwer Academic Publ., Dordrecht, 1992

[10] Kuang Y., Delay Differential Equations: with Applications in Population Dynamics, Academic Press, Boston, 1993

[11] Erneux T., Applied Delay Differential Equations, Springer, New York, 2009

[12] Nedorezov L.V., Utyupin Yu.V., “On a model of the predator–prey system with delay”, Siberian journal of industrial mathematics, 6:4 (2003), 67–74 (In Russ.)

[13] Ruan S., “Delay differential equations in single species dynamics”, Delay Differential Equations and Applications, Springer, Berlin, 2006, 477–517

[14] Malygina V.V., Mulyukov M.V., Pertsev N.V., “On the local stability of a population dynamics model with delay”, Siberian Electronic Mathematical Reports, 11 (2014), 951–957 (In Russ.)

[15] Loginov K.K., Pertsev N.V., “Asymptotic behavior of solutions to a delay integro-differential equation arising in models of living systems”, Siberian Advances in Mathematics, 31:2 (2021), 131–146

[16] Krisztin T., Walther H.-O., Wu J., Shape, Smoothness and Invariant Stratification of an Attracting Set for Delayed Monotone Positive Feedback, American Mathematical Society, Providence, 1999

[17] Röst G., “On the global attractivity controversy for a delay model of hematopoiesis”, Applied Mathematics and Computation, 190:1 (2007), 846–850

[18] Krisztin T., “Global dynamics of delay differential equations”, Periodica Mathematica Hungarica, 56:1 (2008), 83–95

[19] Berezansky L., Braverman E., “Stability of equations with a distributed delay, monotone production and nonlinear mortality”, Nonlinearity, 26:10 (2013), 2833–2849

[20] Demidenko G.V., Matveeva I.I., “Asymptotic properties of solutions to delay differential equations”, Bulletin of Novosibirsk State University. Ser.: Mathematics, Mechanics, Informatics, 5:3 (2005), 20–28 (In Russ.)

[21] Demidenko G.V., Matveeva I.I., “Stability of solutions to delay differential equations with periodic coefficients of linear terms”, Siberian Mathematical Journal, 48:5 (2007), 824–836

[22] Matveeva I.I., “Estimates for solutions to one class of nonlinear delay differential equations”, Journal of Applied and Industrial Mathematics, 7:4 (2013), 557–566

[23] Demidenko G. V., Matveeva I. I., “The second Lyapunov method for time-delay systems”, Functional Differential Equations and Applications, Springer Proceedings in Mathematics Statistics, 379, eds. A. Domoshnitsky, A. Rasin, S. Padhi, Springer Nature, Singapore, 2021, 145–167

[24] Yskak T., “Stability of solutions to systems of nonlinear differential equations with infinite distributed delay”, Chelyabinsk Physical and Mathematical Journal, 8:4 (2023), 542–552 (In Russ.)

[25] Pertsev N.V., “Application of M-matrices in construction of exponential estimates for solutions to the Cauchy problem for systems of linear difference and differential equations”, Siberian Advances in Mathematics, 24:4 (2014), 240–260

[26] Malygina V.V., Chudinov K.M., “About exact two-sided estimates for stable solutions to autonomous functional differential equations”, Siberian Mathematical Journal, 63:2 (2022), 299–315

[27] Skvortsova M.A., “Estimates for solutions for one model of population dynamics with delay”, Mathematical Notes of NEFU, 29:3 (2022), 80–92 (In Russ.)