Global stability and estimates for solutions in a model of population dynamics with delay
Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 4, pp. 634-649

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a model of the isolated population dynamics described by a delay differential equation. We study the case when the model has no more than two equilibrium points corresponding to the complete extinction of the population and to the constant positive population size. We indicate conditions for the right side of the equation, under which solutions are stabilized to equilibrium points for arbitrary non-negative initial data. We obtain estimates for the stabilization rate depending on the coefficients of the equation, the nonlinear function from the right side of the equation, and the function at the initial time interval. The established estimates characterize the rate of population extinction and the rate of stabilization of the population to a constant value. The results are obtained using Lyapunov–Krasovskii functionals.
Keywords: population dynamics, delay differential equation, equilibrium point, asymptotic stability, estimates for solutions, Lyapunov–Krasovskii functional.
@article{CHFMJ_2024_9_4_a8,
     author = {M. A. Skvortsova},
     title = {Global stability and estimates for solutions in a model of population dynamics with delay},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {634--649},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a8/}
}
TY  - JOUR
AU  - M. A. Skvortsova
TI  - Global stability and estimates for solutions in a model of population dynamics with delay
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2024
SP  - 634
EP  - 649
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a8/
LA  - ru
ID  - CHFMJ_2024_9_4_a8
ER  - 
%0 Journal Article
%A M. A. Skvortsova
%T Global stability and estimates for solutions in a model of population dynamics with delay
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2024
%P 634-649
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a8/
%G ru
%F CHFMJ_2024_9_4_a8
M. A. Skvortsova. Global stability and estimates for solutions in a model of population dynamics with delay. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 4, pp. 634-649. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a8/