Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2024_9_4_a8, author = {M. A. Skvortsova}, title = {Global stability and estimates for solutions in a model of population dynamics with delay}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {634--649}, publisher = {mathdoc}, volume = {9}, number = {4}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a8/} }
TY - JOUR AU - M. A. Skvortsova TI - Global stability and estimates for solutions in a model of population dynamics with delay JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2024 SP - 634 EP - 649 VL - 9 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a8/ LA - ru ID - CHFMJ_2024_9_4_a8 ER -
M. A. Skvortsova. Global stability and estimates for solutions in a model of population dynamics with delay. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 4, pp. 634-649. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a8/
[1] Brauer F., Castillo-Chavez C., Mathematical Models in Population Biology and Epidemiology, Springer, New York, 2001
[2] Krasovskii N.N., Stability of Motion, Applications of Lyapunov’s Second Method to Differential Systems and Equations with Delay, Stanford University Press, Stanford, 1963
[3] Bellman R., Cooke K.L., Differential-Difference Equations, Academic Press, New York; London, 1963
[4] El’sgol’ts L.E., Norkin S.B., Introduction to the Theory and Application of Differential Equations with Deviating Arguments, Acad. Press, New York; London, 1973
[5] Hale J., Theory of Functional Differential Equations, Springer, New York; Heidelberg; Berlin, 1977
[6] Azbelev N.V., Maksimov V.P., Rakhmatullina L.F., Introduction to the Theory of Functional Differential Equations, Methods and Applications, Hindawi Publ. Corp., New York, 2007
[7] Kolmanovskii V. B., Myshkis A. D., Introduction to the Theory and Applications of Functional Differential equations, Kluwer Academic Publ., Dordrecht, 1999
[8] Agarwal R. P., Berezansky L., Braverman E., Domoshnitsky A., Nonoscillation Theory of Functional Differential Equations with Applications, Springer, New York, 2012
[9] Gopalsamy K., Stability and Oscillations in Delay Differential Equations of Population Dynamics, Kluwer Academic Publ., Dordrecht, 1992
[10] Kuang Y., Delay Differential Equations: with Applications in Population Dynamics, Academic Press, Boston, 1993
[11] Erneux T., Applied Delay Differential Equations, Springer, New York, 2009
[12] Nedorezov L.V., Utyupin Yu.V., “On a model of the predator–prey system with delay”, Siberian journal of industrial mathematics, 6:4 (2003), 67–74 (In Russ.)
[13] Ruan S., “Delay differential equations in single species dynamics”, Delay Differential Equations and Applications, Springer, Berlin, 2006, 477–517
[14] Malygina V.V., Mulyukov M.V., Pertsev N.V., “On the local stability of a population dynamics model with delay”, Siberian Electronic Mathematical Reports, 11 (2014), 951–957 (In Russ.)
[15] Loginov K.K., Pertsev N.V., “Asymptotic behavior of solutions to a delay integro-differential equation arising in models of living systems”, Siberian Advances in Mathematics, 31:2 (2021), 131–146
[16] Krisztin T., Walther H.-O., Wu J., Shape, Smoothness and Invariant Stratification of an Attracting Set for Delayed Monotone Positive Feedback, American Mathematical Society, Providence, 1999
[17] Röst G., “On the global attractivity controversy for a delay model of hematopoiesis”, Applied Mathematics and Computation, 190:1 (2007), 846–850
[18] Krisztin T., “Global dynamics of delay differential equations”, Periodica Mathematica Hungarica, 56:1 (2008), 83–95
[19] Berezansky L., Braverman E., “Stability of equations with a distributed delay, monotone production and nonlinear mortality”, Nonlinearity, 26:10 (2013), 2833–2849
[20] Demidenko G.V., Matveeva I.I., “Asymptotic properties of solutions to delay differential equations”, Bulletin of Novosibirsk State University. Ser.: Mathematics, Mechanics, Informatics, 5:3 (2005), 20–28 (In Russ.)
[21] Demidenko G.V., Matveeva I.I., “Stability of solutions to delay differential equations with periodic coefficients of linear terms”, Siberian Mathematical Journal, 48:5 (2007), 824–836
[22] Matveeva I.I., “Estimates for solutions to one class of nonlinear delay differential equations”, Journal of Applied and Industrial Mathematics, 7:4 (2013), 557–566
[23] Demidenko G. V., Matveeva I. I., “The second Lyapunov method for time-delay systems”, Functional Differential Equations and Applications, Springer Proceedings in Mathematics Statistics, 379, eds. A. Domoshnitsky, A. Rasin, S. Padhi, Springer Nature, Singapore, 2021, 145–167
[24] Yskak T., “Stability of solutions to systems of nonlinear differential equations with infinite distributed delay”, Chelyabinsk Physical and Mathematical Journal, 8:4 (2023), 542–552 (In Russ.)
[25] Pertsev N.V., “Application of M-matrices in construction of exponential estimates for solutions to the Cauchy problem for systems of linear difference and differential equations”, Siberian Advances in Mathematics, 24:4 (2014), 240–260
[26] Malygina V.V., Chudinov K.M., “About exact two-sided estimates for stable solutions to autonomous functional differential equations”, Siberian Mathematical Journal, 63:2 (2022), 299–315
[27] Skvortsova M.A., “Estimates for solutions for one model of population dynamics with delay”, Mathematical Notes of NEFU, 29:3 (2022), 80–92 (In Russ.)