On estimating the sum of coefficient moduli in Bernstein polynomials on a symmetric interval
Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 4, pp. 622-633.

Voir la notice de l'article provenant de la source Math-Net.Ru

For Bernstein polynomials on the symmetric interval $[-1,1]$, a growth rate problem for the sum of coefficient moduli is considered. Used representations of the polynomials is indicated. We give a possible way to solve the problem through special numerical objects (Pascal's trapezoids). These objects are related to various combinatorial identities. The obtained result improves Roulier's previous estimate, which applies to the sum of coefficient moduli as the index of the Bernstein polynomial increases.
Keywords: Bernstein polynomials, symmetric interval, estimates of coefficients, Pascal's trapezoids.
@article{CHFMJ_2024_9_4_a7,
     author = {M. A. Petrosova},
     title = {On estimating the sum of coefficient moduli in {Bernstein} polynomials on a symmetric interval},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {622--633},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a7/}
}
TY  - JOUR
AU  - M. A. Petrosova
TI  - On estimating the sum of coefficient moduli in Bernstein polynomials on a symmetric interval
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2024
SP  - 622
EP  - 633
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a7/
LA  - ru
ID  - CHFMJ_2024_9_4_a7
ER  - 
%0 Journal Article
%A M. A. Petrosova
%T On estimating the sum of coefficient moduli in Bernstein polynomials on a symmetric interval
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2024
%P 622-633
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a7/
%G ru
%F CHFMJ_2024_9_4_a7
M. A. Petrosova. On estimating the sum of coefficient moduli in Bernstein polynomials on a symmetric interval. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 4, pp. 622-633. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a7/

[1] Lorentz G. G., Bernstein Polynomials, University of Toronto Press, Toronto, 1953

[2] Tikhonov I.V., Sherstyukov V.B., Petrosova M.A., “Bernstein polynomials: the old and the new”, v. 8, Mathematical forum, no. 1, YuMI VNTs RAN i RSO-A, Vladikavkaz, 2014, 126–175 (In Russ.)

[3] Bustamante J., Bernstein Operators and Their Properties, Birkhäuser, Cham, 2017

[4] Videnskij V.S., Linear positive operators of finite rank. Bernstein polynomials, Lan', Saint Petersburg, 2023 (In Russ.)

[5] Tikhonov I.V., Sherstyukov V.B., “Approximation of the module by Bernstein polynomials”, Bulletin of Chelyabinsk State University. Mathematics. Mechanics. Informatics, 15:26 (2012), 6–40 (In Russ.)

[6] Tikhonov I.V., Sherstyukov V.B., “On the behavior of the coefficients of Bernstein polynomials in algebraic notation on a standard interval”, Some actual problems of modern mathematics and mathematical education, Scientific Conference “Herzen Readings”, A. I. Herzen Russian State Pedagogical University, Saint Petersburg, 2015, 115–121 (In Russ.)

[7] Tikhonov I.V., Sherstyukov V.B., “Bernstein polynomials for a power function on a symmetric interval”, Systems of computer mathematics and their applications, XVI International Scientific Conference, v. 16, Smolensk State University, Smolensk, 2015, 215–220 (In Russ.)

[8] Tikhonov I.V., Sherstyukov V.B., Petrosova M.A., “The gluing rule for Bernstein polynomials on a symmetric interval”, News of Saratov University. Ser. Mathematics. Mechanics. Informatics, 15:3 (2015), 288–300 (In Russ.)

[9] Tikhonov I.V., Sherstyukov V.B., Petrosova M.A., “Bernstein polynomials for a standard module on a symmetric interval”, News of Saratov University. New series. Mathematics. Mechanics. Informatics, 16:4 (2016), 425–435 (In Russ.)

[10] Petrosova M.A., Tikhonov I.V., Sherstyukov V.B., “On the growth of coefficients in Bernstein polynomials for a standard module on a symmetric interval”, Ufa Mathematical Journal, 10:3 (2018), 89–107 (In Russ.)

[11] Tikhonov I.V., Sherstyukov V.B., Petrosova M.A., “A new research related to the algebraic representation of Bernstein polynomials on a symmetric interval”, Systems of computer mathematics and their applications, XIX International Scientific Conference, v. 19, Smolensk State University, Smolensk, 2018, 336–347 (In Russ.)

[12] Petrosova M.A., Tikhonov I.V., Sherstyukov V.B., “Algebraic representation for Bernstein polynomials on the symmetric interval and combinatorial identities”, Vladikavkaz mathematical journal, 21:3 (2019), 62–86 (In Russ.)

[13] Tikhonov I.V., Sherstyukov V.B., Petrosova M.A., “On coefficients of Bernstein polynomials of simple power functions on a symmetrical interval”, Contemporary problems of mathematics and mathematical education, International Scientific Conference, A. I. Herzen Russian State Pedagogical University, Saint Petersburg, 2024, 305–309 (In Russ.)

[14] Stafney J. D., “A permissible restriction on the coefficients in uniform polynomial approximation to $C[0,1]$”, Duke Mathematical Journal, 34:3 (1967), 393–396

[15] Havinson S.Ya., “Acceptable values of the coefficients of polynomials in the uniform approximation of continuous functions”, Mathematical notes, 6:5 (1969), 619–625 (In Russ.)

[16] Roulier J. A., “Permissible bounds on the coefficients of approximating polynomials”, Journal of Approximation Theory, 3:2 (1970), 117–122

[17] Roulier J. A., “Restrictions on the coefficients of approximating polynomials”, Journal of Approximation Theory, 6:3 (1972), 276–282

[18] Gurarii V.I., Meletidi M.A., “On estimates of the coefficients of polynomials approximating continuous functions”, Functional Analysis and Its Applications, 5:1 (1971), 60–62

[19] Muradyan O.A., Khavinson S.Ya., “Absolute values of the coefficients of the polynomials in Weierstrass's approximation theorem”, Mathematical Notes, 22:2 (1977), 641–645

[20] Trynin A.Yu., “On the polynomials of the best approximation of segment functions”, Vladikavkaz mathematical journal, 25:1 (2023), 105–111 (In Russ.)

[21] Fowler D., “The binomial coefficient function”, The American Mathematical Monthly, 103:1 (1996), 1–17

[22] Graham R.L., Knuth D.E., Patashnik O., Concrete Mathematics. A foundation for Computer Science, Mir; BINOM. Laboratoriya znanij, Moscow, 2006 (In Russ.)