On estimating the sum of coefficient moduli in Bernstein polynomials on a symmetric interval
Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 4, pp. 622-633

Voir la notice de l'article provenant de la source Math-Net.Ru

For Bernstein polynomials on the symmetric interval $[-1,1]$, a growth rate problem for the sum of coefficient moduli is considered. Used representations of the polynomials is indicated. We give a possible way to solve the problem through special numerical objects (Pascal's trapezoids). These objects are related to various combinatorial identities. The obtained result improves Roulier's previous estimate, which applies to the sum of coefficient moduli as the index of the Bernstein polynomial increases.
Keywords: Bernstein polynomials, symmetric interval, estimates of coefficients, Pascal's trapezoids.
@article{CHFMJ_2024_9_4_a7,
     author = {M. A. Petrosova},
     title = {On estimating the sum of coefficient moduli in {Bernstein} polynomials on a symmetric interval},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {622--633},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a7/}
}
TY  - JOUR
AU  - M. A. Petrosova
TI  - On estimating the sum of coefficient moduli in Bernstein polynomials on a symmetric interval
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2024
SP  - 622
EP  - 633
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a7/
LA  - ru
ID  - CHFMJ_2024_9_4_a7
ER  - 
%0 Journal Article
%A M. A. Petrosova
%T On estimating the sum of coefficient moduli in Bernstein polynomials on a symmetric interval
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2024
%P 622-633
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a7/
%G ru
%F CHFMJ_2024_9_4_a7
M. A. Petrosova. On estimating the sum of coefficient moduli in Bernstein polynomials on a symmetric interval. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 4, pp. 622-633. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a7/