Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2024_9_4_a7, author = {M. A. Petrosova}, title = {On estimating the sum of coefficient moduli in {Bernstein} polynomials on a symmetric interval}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {622--633}, publisher = {mathdoc}, volume = {9}, number = {4}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a7/} }
TY - JOUR AU - M. A. Petrosova TI - On estimating the sum of coefficient moduli in Bernstein polynomials on a symmetric interval JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2024 SP - 622 EP - 633 VL - 9 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a7/ LA - ru ID - CHFMJ_2024_9_4_a7 ER -
M. A. Petrosova. On estimating the sum of coefficient moduli in Bernstein polynomials on a symmetric interval. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 4, pp. 622-633. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a7/
[1] Lorentz G. G., Bernstein Polynomials, University of Toronto Press, Toronto, 1953
[2] Tikhonov I.V., Sherstyukov V.B., Petrosova M.A., “Bernstein polynomials: the old and the new”, v. 8, Mathematical forum, no. 1, YuMI VNTs RAN i RSO-A, Vladikavkaz, 2014, 126–175 (In Russ.)
[3] Bustamante J., Bernstein Operators and Their Properties, Birkhäuser, Cham, 2017
[4] Videnskij V.S., Linear positive operators of finite rank. Bernstein polynomials, Lan', Saint Petersburg, 2023 (In Russ.)
[5] Tikhonov I.V., Sherstyukov V.B., “Approximation of the module by Bernstein polynomials”, Bulletin of Chelyabinsk State University. Mathematics. Mechanics. Informatics, 15:26 (2012), 6–40 (In Russ.)
[6] Tikhonov I.V., Sherstyukov V.B., “On the behavior of the coefficients of Bernstein polynomials in algebraic notation on a standard interval”, Some actual problems of modern mathematics and mathematical education, Scientific Conference “Herzen Readings”, A. I. Herzen Russian State Pedagogical University, Saint Petersburg, 2015, 115–121 (In Russ.)
[7] Tikhonov I.V., Sherstyukov V.B., “Bernstein polynomials for a power function on a symmetric interval”, Systems of computer mathematics and their applications, XVI International Scientific Conference, v. 16, Smolensk State University, Smolensk, 2015, 215–220 (In Russ.)
[8] Tikhonov I.V., Sherstyukov V.B., Petrosova M.A., “The gluing rule for Bernstein polynomials on a symmetric interval”, News of Saratov University. Ser. Mathematics. Mechanics. Informatics, 15:3 (2015), 288–300 (In Russ.)
[9] Tikhonov I.V., Sherstyukov V.B., Petrosova M.A., “Bernstein polynomials for a standard module on a symmetric interval”, News of Saratov University. New series. Mathematics. Mechanics. Informatics, 16:4 (2016), 425–435 (In Russ.)
[10] Petrosova M.A., Tikhonov I.V., Sherstyukov V.B., “On the growth of coefficients in Bernstein polynomials for a standard module on a symmetric interval”, Ufa Mathematical Journal, 10:3 (2018), 89–107 (In Russ.)
[11] Tikhonov I.V., Sherstyukov V.B., Petrosova M.A., “A new research related to the algebraic representation of Bernstein polynomials on a symmetric interval”, Systems of computer mathematics and their applications, XIX International Scientific Conference, v. 19, Smolensk State University, Smolensk, 2018, 336–347 (In Russ.)
[12] Petrosova M.A., Tikhonov I.V., Sherstyukov V.B., “Algebraic representation for Bernstein polynomials on the symmetric interval and combinatorial identities”, Vladikavkaz mathematical journal, 21:3 (2019), 62–86 (In Russ.)
[13] Tikhonov I.V., Sherstyukov V.B., Petrosova M.A., “On coefficients of Bernstein polynomials of simple power functions on a symmetrical interval”, Contemporary problems of mathematics and mathematical education, International Scientific Conference, A. I. Herzen Russian State Pedagogical University, Saint Petersburg, 2024, 305–309 (In Russ.)
[14] Stafney J. D., “A permissible restriction on the coefficients in uniform polynomial approximation to $C[0,1]$”, Duke Mathematical Journal, 34:3 (1967), 393–396
[15] Havinson S.Ya., “Acceptable values of the coefficients of polynomials in the uniform approximation of continuous functions”, Mathematical notes, 6:5 (1969), 619–625 (In Russ.)
[16] Roulier J. A., “Permissible bounds on the coefficients of approximating polynomials”, Journal of Approximation Theory, 3:2 (1970), 117–122
[17] Roulier J. A., “Restrictions on the coefficients of approximating polynomials”, Journal of Approximation Theory, 6:3 (1972), 276–282
[18] Gurarii V.I., Meletidi M.A., “On estimates of the coefficients of polynomials approximating continuous functions”, Functional Analysis and Its Applications, 5:1 (1971), 60–62
[19] Muradyan O.A., Khavinson S.Ya., “Absolute values of the coefficients of the polynomials in Weierstrass's approximation theorem”, Mathematical Notes, 22:2 (1977), 641–645
[20] Trynin A.Yu., “On the polynomials of the best approximation of segment functions”, Vladikavkaz mathematical journal, 25:1 (2023), 105–111 (In Russ.)
[21] Fowler D., “The binomial coefficient function”, The American Mathematical Monthly, 103:1 (1996), 1–17
[22] Graham R.L., Knuth D.E., Patashnik O., Concrete Mathematics. A foundation for Computer Science, Mir; BINOM. Laboratoriya znanij, Moscow, 2006 (In Russ.)