Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2024_9_4_a6, author = {I. I. Matveeva}, title = {Stability of solutions to class of nonlinear systems of integro-differential delay equations}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {609--621}, publisher = {mathdoc}, volume = {9}, number = {4}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a6/} }
TY - JOUR AU - I. I. Matveeva TI - Stability of solutions to class of nonlinear systems of integro-differential delay equations JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2024 SP - 609 EP - 621 VL - 9 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a6/ LA - ru ID - CHFMJ_2024_9_4_a6 ER -
I. I. Matveeva. Stability of solutions to class of nonlinear systems of integro-differential delay equations. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 4, pp. 609-621. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a6/
[1] El'sgol'ts L.E., Norkin S.B., Introduction to the Theory and Application of Differential Equations with Deviating Arguments, Academic Press, New York, 1973
[2] Hale J., Theory of Functional Differential Equations, Springer, New York, 1977
[3] Korenevskiĭ D.G., Stability of Dynamical Systems under Random Perturbations of Parameters. Algebraic Criteria, Naukova Dumka, Kiev, 1989 (In Russ.)
[4] Dolgiĭ Yu.F., Stability of Periodic Differential-Difference Equations, Ural State University, Ekaterinburg, 1996 (In Russ.)
[5] Kolmanovskii V. B., Myshkis A. D., Introduction to the Theory and Applications of Functional Differential Equations, Kluwer Acad. Publ., Dordrecht, 1999
[6] Azbelev N.V., Selected Works, Institute of Computer Science, Moscow and Izhevsk, 2012
[7] Agarwal R. P., Berezansky L., Braverman E., Domoshnitsky A., Nonoscillation Theory of Functional Differential Equations with Applications, Springer, New York, 2012
[8] Kharitonov V. L., Time-Delay Systems. Lyapunov Functionals and Matrices. Control Engineering, Birkhäuser, New York, 2013
[9] Gil' M. I., Stability of neutral functional differential equations, v. 3, Atlantis Studies in Differential Equations, Atlantis Press, Paris, 2014
[10] Michiels W., Niculescu S. I., Stability, Control, and Computation for Time-Delay Systems. An Eigenvalue-Based Approach, SIAM, Philadelphia, 2014
[11] Park J. H., Lee T. H., Liu Y., Chen J., Dynamic Systems with Time Delays: Stability and Control, Springer, Singapore, 2019
[12] Demidenko G.V., Matveeva I.I., “Stability of solutions to delay differential equations with periodic coefficients of linear terms”, Siberian Mathematical Journal, 48:5 (2007), 824–836
[13] Matveeva I.I., “Estimates for solutions to one class of nonlinear delay differential equations”, Journal of Applied and Industrial Mathematics, 7:4 (2013), 557–566
[14] Demidenko G.V., Matveeva I.I., Skvortsova M.A., “Estimates for solutions to neutral differential equations with periodic coefficients of linear terms”, Siberian Mathematical Journal, 60:5 (2019), 828–841
[15] Matveeva I.I., “Estimates of exponential decay of solutions to one class of nonlinear systems of neutral type with periodic coefficients”, Computational Mathematics and Mathematical Physics, 60:4 (2020), 601–609
[16] Matveeva I.I., “Estimates for solutions to a class of nonautonomous systems of neutral type with unbounded delay”, Siberian Mathematical Journal, 62:3 (2021), 468–481
[17] Matveeva I. I., “Estimates for solutions to one class of nonlinear nonautonomous systems with time-varying concentrated and distributed delays”, Siberian Electronic Mathematical Reports, 18:2 (2021), 1689–1697
[18] Matveeva I.I., “Estimates of the exponential decay of solutions to linear systems of neutral type with periodic coefficients”, Journal of Applied and Industrial Mathematics, 13:3 (2019), 511–518
[19] Hartman Ph., Ordinary Differential Equations, Wiley, New York, 1964
[20] Yskak T., “Estimates for solutions to one class of systems of nonlinear differential equations with distributed delay”, Siberian Electronic Mathematical Reports, 17 (2020), 2204–2215