Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2024_9_4_a2, author = {G. V. Demidenko and A. A. Bondar' and M. Sh. Ganzhaeva}, title = {Exponential dichotomy for systems of difference equations under perturbation of coefficients}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {561--572}, publisher = {mathdoc}, volume = {9}, number = {4}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a2/} }
TY - JOUR AU - G. V. Demidenko AU - A. A. Bondar' AU - M. Sh. Ganzhaeva TI - Exponential dichotomy for systems of difference equations under perturbation of coefficients JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2024 SP - 561 EP - 572 VL - 9 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a2/ LA - ru ID - CHFMJ_2024_9_4_a2 ER -
%0 Journal Article %A G. V. Demidenko %A A. A. Bondar' %A M. Sh. Ganzhaeva %T Exponential dichotomy for systems of difference equations under perturbation of coefficients %J Čelâbinskij fiziko-matematičeskij žurnal %D 2024 %P 561-572 %V 9 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a2/ %G ru %F CHFMJ_2024_9_4_a2
G. V. Demidenko; A. A. Bondar'; M. Sh. Ganzhaeva. Exponential dichotomy for systems of difference equations under perturbation of coefficients. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 4, pp. 561-572. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a2/
[1] Daleckii Yu.L., Krein M.G., Stability of Solutions to Differential Equations in Banach Space, American Mathematical Society, Providence, 1974
[2] Godunov S.K., Modern Aspects of Linear Algebra, American Mathematical Society, Providence, 1998
[3] Bulgak A., Bulgak H., Linear algebra, Selcuk University, Konya, 2001
[4] Abramov A.A., “On the boundary conditions at a singular point for linear ordinary differential equations”, USSR Computational Mathematics and Mathematical Physics, 11:1 (1971), 363–367
[5] Roberts J. D., “Linear model reduction and solution of the algebraic Riccati equation by use of the sign function”, International Journal of Control, 32:4 (1980), 677–687
[6] Balzer L. A., “Accelerated convergence of the matrix sign function method of solving Lyapunov, Riccati and other matrix equations”, International Journal of Control, 32:6 (1980), 1057–1078
[7] Bulgakov A.Ya., Godunov S.K., “Circular dichotomy of the spectrum of a matrix”, Siberian Mathematical Journal, 29:5 (1988), 734–744
[8] Bulgak H., “Pseudoeigenvalues, spectral portrait of a matrix and their connections with different criteria of stability”, Error Control and Adaptivity in Scientific Computing, eds. H. Bulgak, C. Zenger, Springer, Dordrecht, 1999, 95–124
[9] Bondar A.A., “On conditions for exponential dichotomy for systems of difference equations under perturbation of coefficients”, Mathematical Notes of NEFU, 26:4 (2019), 3–13
[10] Aydin K., Bulgak H., Demidenko G.V., “Asymptotic stability of solutions to perturbed linear difference equations with periodic coefficients”, Siberian Mathematical Journal, 43:3 (2002), 389–401
[11] Demidenko G.V., Matrix Equations, Textbook, Novosibirsk State University, Novosibirsk, 2009 (In Russ.)
[12] Demidenko G.V., Bondar A.A., “Exponential dichotomy of systems of linear difference equations with periodic coefficients”, Siberian Mathematical Journal, 57:6 (2016), 969–980
[13] Demidenko G. V., “Stability of solutions to difference equations with periodic coefficients in linear terms”, Journal of Computational Mathematics and Optimization, 6:1 (2010), 1–12
[14] Demidenko G.V., “Systems of differential equations with periodic coefficients”, Journal of Applied and Industrial Mathematics, 8:1 (2014), 20–27
[15] Demidenko G.V., “On one class of systems of differential equations with periodic coefficients in linear terms”, Siberian Mathematical Journal, 62:5 (2021), 805–821