Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2024_9_4_a14, author = {D. Yu. Karpenkov and R. A. Makaryin and K. P. Skokov and M. V. Zhelezny}, title = {Method for calculating the itinerant electron entropy change from transport properties}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {703--712}, publisher = {mathdoc}, volume = {9}, number = {4}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a14/} }
TY - JOUR AU - D. Yu. Karpenkov AU - R. A. Makaryin AU - K. P. Skokov AU - M. V. Zhelezny TI - Method for calculating the itinerant electron entropy change from transport properties JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2024 SP - 703 EP - 712 VL - 9 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a14/ LA - en ID - CHFMJ_2024_9_4_a14 ER -
%0 Journal Article %A D. Yu. Karpenkov %A R. A. Makaryin %A K. P. Skokov %A M. V. Zhelezny %T Method for calculating the itinerant electron entropy change from transport properties %J Čelâbinskij fiziko-matematičeskij žurnal %D 2024 %P 703-712 %V 9 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a14/ %G en %F CHFMJ_2024_9_4_a14
D. Yu. Karpenkov; R. A. Makaryin; K. P. Skokov; M. V. Zhelezny. Method for calculating the itinerant electron entropy change from transport properties. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 4, pp. 703-712. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a14/
[1] Ashcroft N.W., Mermin N.D., Solid State Physics, Brooks/Cole Thomson Learning, South Melbourne, 2012
[2] Perez N., Chirkova A., Skokov K.P., et al., “Electronic entropy change in Ni-doped FeRh”, Materials Today Physics, 9 (2019), 100129
[3] Onsager L., “Reciprocal relations in irreversible processes. I”, Physical Review, 37:4 (1931), 405
[4] Onsager L., “Reciprocal relations in irreversible processes. I”, Physical Review, 38:12 (1931), 2265
[5] Ioffe A.F., Stil’Bans L.S., Iordanishvili E.K., Stavitskaya T.S., Gelbtuch A., Vineyard G., “Semiconductor thermoelements and thermoelectric cooling”, Physics Today, 12:5 (1959), 42
[6] Rockwood A.L., “Relationship of thermoelectricity to electronic entropy”, Physical Review A, 30:5 (1984), 2843
[7] Peterson M.R., Shastry B.S., “Kelvin formula for thermopower”, Physical Review B, 82:19 (2010), 195105
[8] Gruner M.E., Keune W., Roldan Cuenya B., et al., “Element-resolved thermodynamics of magnetocaloric LaFe$_{13-x}$Si$_x$”, Physical Review Letters, 114:5 (2015), 057202
[9] Perez N., Wolf C., Kunzmann C., et al., “Entropy of Conduction Electrons from Transport Experiments”, Entropy, 22:2 (2020), 244
[10] Skokov K.P., Karpenkov A.Y., Karpenkov D.Y., et al., “The maximal cooling power of magnetic and thermoelectric refrigerators with La(FeCoSi)$_{13}$ alloys”, Journal of Applied Physics, 113:17 (2013), 17A945
[11] Leet R.S., Legvold S., “Hall effect of gadolinium, lutetium, and yttrium single crystals”, Physical Review, 162 (1967), 431–435
[12] Lee M., Onose Y., Tokura Y., and Ong N.P., “THidden constant in the anomalous Hall effect of high-purity magnet MnSi”, Physical Review B, 75 (2007), 172403
[13] Neubauer A., Pfleiderer C., Ritz R., et al., “Hall effect and magnetoresistance in MnSi”, Physica B, 404 (2009), 3163–3166
[14] Karpenkov D.Yu., Skokov K.P., Radulov I.A., et al., “Anomalous Hall effect in La(Fe, Co)$_{13-x}$Si$_x$ compounds”, Physical Review B, 100:9 (2019), 094445