Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2024_9_4_a13, author = {E. V. Fomin}, title = {Study of the motion of the grain boundaries ensemble in pure aluminum at high temperatures by cellular automata and machine learning methods}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {689--702}, publisher = {mathdoc}, volume = {9}, number = {4}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a13/} }
TY - JOUR AU - E. V. Fomin TI - Study of the motion of the grain boundaries ensemble in pure aluminum at high temperatures by cellular automata and machine learning methods JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2024 SP - 689 EP - 702 VL - 9 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a13/ LA - en ID - CHFMJ_2024_9_4_a13 ER -
%0 Journal Article %A E. V. Fomin %T Study of the motion of the grain boundaries ensemble in pure aluminum at high temperatures by cellular automata and machine learning methods %J Čelâbinskij fiziko-matematičeskij žurnal %D 2024 %P 689-702 %V 9 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a13/ %G en %F CHFMJ_2024_9_4_a13
E. V. Fomin. Study of the motion of the grain boundaries ensemble in pure aluminum at high temperatures by cellular automata and machine learning methods. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 4, pp. 689-702. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a13/
[1] Zhang L., Lu C., Tieu K., “A review on atomistic simulation of grain boundary behaviors in face-centered cubic metals”, Computational Materials Science, 118 (2016), 180–191
[2] Li X., Guan X., Jia Z., Chen P., Fan C., Shi F., “Twin-related grain boundary engineering and its influence on mechanical properties of face-centered cubic metals: A review”, Metals, 118 (2023), 180–191
[3] Quirk J., Quirk M.R., Rothmann M., Li W., Abou-Ras D., McKenna K.P., “Grain boundaries in polycrystalline materials for energy applications: first principles modeling and electron microscopy”, Applied Physics Reviews, 11 (2024), 011308
[4] Fomin E.V., Mayer A.E., “Slip of low-angle tilt grain boundary (110) in FCC metals at perpendicular shear”, International Journal of Plasticity, 134 (2020), 102843
[5] Zhang L., Gu Y., Xiang Y., “Energy of low angle grain boundaries based on continuum dislocation structure”, Acta Materialia, 126 (2017), 11–24
[6] Fomin E.V., “Molecular dynamics study of temperature dependence of grain boundaries (100) in pure aluminum with application of machine learning”, Metals, 14 (2024), 415
[7] Guan X.J., Shi F., Ji H.M., Li X.W., “A possibility to synchronously improve the high-temperature strength and ductility in face-centered cubic metals through grain boundary engineering”, Scripta Materialia, 187 (2020), 216–220
[8] Dolzhenko P., Tikhonova M., Odnobokova M., Kaibyshev R., Belyakov A., “On grain boundary engineering for a 316L Austenitic Stainless Steel”, Metals, 12 (2022), 2185
[9] Salama H., Kundin J., Shchyglo O., Mohles V., Marquardt K., Steinbach I., “Role of inclination dependence of grain boundary energy on the microstructure evolution during grain growth”, Acta Materialia, 188 (2020), 641–651
[10] Chen F., Zhu H., Chen W., Ou H., Cui Z., “Multiscale modeling of discontinuous dynamic recrystallization during hot working by coupling multilevel cellular automaton and finite element method”, International Journal of Plasticity, 145 (2021), 103064
[11] Liu G., Zhang D., Yao C., “Investigation of the grain refinement mechanism in machining Ti-6Al-4V: Experiments and simulations”, Journal of Manufacturing Processes, 94 (2023), 479–496
[12] Raghavan S., Sahay S.S., “Modeling the grain growth kinetics by cellular automaton”, Materials Science and Engineering A, 445–446 (2007), 203–209
[13] Wang G.-Q., Chen M.-S., Lin Y.-C., Li H.-B., Ma Y.-Y., Zou Z.-H., Chen Q., “Effects of deformation processing parameters on the microstructure evolution and microhardness of GH4169 superalloy during annealing treatment”, Advanced Engineering Materials, 23 (2021), 2100104
[14] Hallberg H., Bulatov V.V., “Modeling of grain growth under fully anisotropic grain boundary energy”, Modelling and Simulation in Materials Science and Engineering, 27 (2019), 045002
[15] Hill A.R., Cubillas P., Gebbie-Rayet J.T., Trueman M., de Bruyn N., al Harthi Z., Pooley R.J.S., Attfield M.P., Blatov V.A., Proserpio D.M., Gale J.D., Akporiaye D., Arstad B., Anderson M.W., “CrystalGrower: a generic computer program for Monte Carlo modelling of crystal growth”, Chemical Science, 12 (2021), 1126–1146
[16] He Y., Ding H., Liu L., Shin K., “Computer simulation of 2D grain growth using a cellular automata model based on the lowest energy principle”, Materials Science and Engineering A, 429 (2006), 236–246
[17] Traka K., Sedighiani K., Bos C., Lopez J.G., Angenendt K., Raabe D., Sietsma J., “Topological aspects responsible for recrystallization evolution in an IF-steel sheet — Investigation with cellular-automaton simulations”, Computational Materials Science, 198 (2021), 110643
[18] Ye L., Mei B., Yu L., “Modeling of abnormal grain growth that considers anisotropic grain boundary energies by cellular automaton model”, Metals, 12 (2022), 1717
[19] O'Brien C.J., Foiles S.M., “Exploration of the mechanisms of temperature-dependent grain boundary mobility: search for the common origin of ultrafast grain boundary motion”, Journal of Material Science, 51 (2016), 6607–6623
[20] Feng B., Wei J., Shibata N., Ikuhara Y., “Atomistic grain boundary migration in $\mathrm{Al}_{2}\ mathrm{O}_{3}$”, International Journal of Ceramic Engineering and Science, 5 (2023), e10169
[21] Dillon S.J., Harmer M.P., Rohrer G.S., “The relative energies of normally and abnormally growing grain boundaries in alumina displaying different complexions”, Journal of the American Ceramic Society, 93 (2010), 1796–1802
[22] Kelly M.N., Bojarski S.A., Rohrer G.S., “The temperature dependence of the relative grain-boundary energy of yttria-doped alumina”, Journal of the American Ceramic Society, 100 (2016), 1–7
[23] Fomin E.V., “Study of the temperature dependence of the symmetrical grain boundary energies on the plane (110) in aluminum”, Chelyabinsk Physical and Mathematical Journal, 8:3 (2023), 421–435
[24] Cummins S.J., Francois M.M., Kothe D.B., “Estimating curvature from volume fractions”, Computers and Structures, 83 (2005), 425–434
[25] Guo Z., Fletcher D.F., Brian S., “Haynes implementation of a height function method to alleviate spurious currents in CFD modelling of annular flow in microchannels”, Applied Mathematical Modelling, 39 (2015), 4665–4686
[26] Nino J.D., Johnson O.K., “Influence of grain boundary energy anisotropy on the evolution of grain boundary network structure during 3D anisotropic grain growth”, Computational Materials Science, 217 (2023), 111879
[27] Yang H., Wu C., Li H., Fan X., “Review on cellular automata simulations of microstructure evolution during metal forming process: Grain coarsening, recrystallization and phase transformation”, Science China Technological Sciences, 54 (2011), 2107–2118
[28] Bulatov V.V., Reed R.W., Kumar M., “Grain boundary energy function for fcc metals”, Acta Materialia, 65 (2014), 161–175
[29] Sussman M., “A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles”, Acta Materialia, 187 (2003), 110–136
[30] Hirth J., Lothe J., Theory of Dislocations, Wiley, New York, 1982
[31] Raman V., Langdon T.G., “Cyclic grain boundary migration and sliding in pure aluminum”, Acta Metallurgica et Materialia, 38 (1990), 497–507
[32] Zhang H., Upmanyu M., Srolovitz D.J., “Curvature driven grain boundary migration in aluminum: Molecular dynamics simulations”, Acta Materialia, 53 (2005), 79–86
[33] Gottstein G., Molodov D.A., Shvindlerman L.S., Srolovitz D.J., Winning M., “Grain boundary migration: misorientation dependence”, Current Opinion in Solid State and Materials Science, 5 (2001), 9–14
[34] Humphreys F.J., “A unified theory of recovery, recrystallization and grain growth, based on the stability and growth of cellular microstructures — I. The basic model”, Acta Materialia, 45 (1997), 4231–4231