Peculiarities of magnetotransport properties of Mo$_x$W$_{1-x}$Te$_2$ (x = 0; 0.7) single crystals
Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 4, pp. 658-669.

Voir la notice de l'article provenant de la source Math-Net.Ru

The magnetotransport properties of Mo$_{0.7}$W$_{0.3}$Te$_{2}$ and WTe$_{2}$ single crystals were studied at temperatures from 4.2 to 80 K and in magnetic fields up to 10 T. The concentrations and mobilities of electron and hole current carriers were estimated in the studied samples at a temperature of 4.2 K. It was found that the carrier mobility in the WTe$_{2}$ single crystal is an order of magnitude higher than the values obtained for Mo$_{0.7}$W$_{0.3}$Te$_{2}$, which is associated with its higher “electrical” purity. A minimum of the temperature dependence of the resistivity of WTe$_{2}$ was found in a magnetic field of 10 T at a temperature of 60 K, which can be explained by the transition from effectively high magnetic fields to weak ones. The absence of such a minimum for the Mo$_{0.7}$W$_{0.3}$Te$_{2}$ single crystal is due to the fact that the region of effectively high magnetic fields is not reached for it. The Hall resistivity of WTe$_{2}$ was shown to depend quadratically on the magnetic field at a temperature of 4.2 K, which is associated with the decompensation of electrons and holes, as well as with the scattering of charge carriers on the surface of the sample. Whereas for Mo$_{0.7}$W$_{0.3}$Te$_{2}$, along with the quadratic contribution, a linear contribution to the Hall resistivity was observed, the cause of which may be the presence of a large number of defects and impurities in the crystal, which leads to a decrease in the mean free path of carriers and, consequently, to a decrease in the contribution of electron-surface scattering.
Keywords: transition metal dichalcogenides, topological semimetals, ${\rm Mo}_{0.7}{\rm W}_{0.3}{\rm Te}_{2}$, ${\rm WTe}_{2}$, single crystals, magnetotransport properties.
@article{CHFMJ_2024_9_4_a10,
     author = {A. N. Perevalova and B. M. Fominykh and V. V. Chistyakov and V. V. Marchenkov},
     title = {Peculiarities of magnetotransport properties of {Mo}$_x${W}$_{1-x}${Te}$_2$ (x = 0; 0.7) single crystals},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {658--669},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a10/}
}
TY  - JOUR
AU  - A. N. Perevalova
AU  - B. M. Fominykh
AU  - V. V. Chistyakov
AU  - V. V. Marchenkov
TI  - Peculiarities of magnetotransport properties of Mo$_x$W$_{1-x}$Te$_2$ (x = 0; 0.7) single crystals
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2024
SP  - 658
EP  - 669
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a10/
LA  - ru
ID  - CHFMJ_2024_9_4_a10
ER  - 
%0 Journal Article
%A A. N. Perevalova
%A B. M. Fominykh
%A V. V. Chistyakov
%A V. V. Marchenkov
%T Peculiarities of magnetotransport properties of Mo$_x$W$_{1-x}$Te$_2$ (x = 0; 0.7) single crystals
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2024
%P 658-669
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a10/
%G ru
%F CHFMJ_2024_9_4_a10
A. N. Perevalova; B. M. Fominykh; V. V. Chistyakov; V. V. Marchenkov. Peculiarities of magnetotransport properties of Mo$_x$W$_{1-x}$Te$_2$ (x = 0; 0.7) single crystals. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 4, pp. 658-669. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a10/

[1] Choi W., Choudhary N., Han G. H., Park J., Akinwande D., Lee Y. H., “Recent development of two-dimensional transition metal dichalcogenides and their applications”, Materials Today, 20 (2017), 116–130

[2] Liu Y., Zeng C., Zhong J., Ding J., Wang Z. M., Liu Z., “Spintronics in two-dimensional materials”, Nano–Micro Letters, 12 (2020), 93

[3] Soluyanov A.A., Gresch D., Wang Z., Wu Q., Troyer M., Dai X., Bernevig B. A., “Type-II Weyl semimetals”, Nature, 527 (2015), 495–498

[4] Deng K., Wan G., Deng P., Zhang K., Ding S., Wang E., Yan M., Huang H., Zhang H., Xu Z., Denlinger J., Fedorov A., Yang H., Duan W., Yao H., Wu Y., Fan S., Zhang H., Chen X., Zhou S., “Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe$_{2}$”, Nature Physics, 12 (2016), 1105–1110

[5] Chang T. R., Xu S.-Y., Chang G., Lee C.-C., Huang S.-M., Wang B., Bian G., Zheng H., Sanchez D. S., Belopolski I., Alidoust N., Neupane M., Bansil A., Jeng H.-T., Lin H., Hasan M. Z., “Prediction of an arc-tunable Weyl Fermion metallic state in Mo$_{x}$W$_{1-x}$Te$_{2}$”, Nature Communications, 7 (2016), 10639

[6] Belopolski I., Sanchez D. S., Ishida Y., Pan X., Yu P., Xu S.-Y., Chang G., Chang T. R., Zheng H., Alidoust N., Bian G., Neupane M., Huang S.-M., Lee C.-C., Song Y., Bu H., Wang G., Li S., Eda G., Jeng H.-T., Kondo T., Lin H., Liu Z., Song F., Shin S., Hasan M. Z., “Discovery of a new type of topological Weyl fermion semimetal state in Mo$_{x}$W$_{1-x}$Te$_{2}$”, Nature Communications, 7 (2016), 13643

[7] Jiang J., Tang F., Pan X. C., Liu H. M., Niu X. H., Wang Y. X., Xu D. F., Yang H. F., Xie B. P., Song F. Q., Dudin P., Kim T. K., Hoesch M., Kumar Das P., Vobornik I., Wan X. G., Feng D. L., “Signature of strong spin-orbital coupling in the large nonsaturating magnetoresistance material WTe$_{2}$”, Physical Review Letters, 115 (2015), 166601

[8] Li P., Wen Y., He X., Zhang Q., Xia C., Yu Z.-M., Yang S. A., Zhu Z., Alshareef H. N., Zhang X.-X., “Evidence for topological type-II Weyl semimetal WTe$_{2}$”, Nature Communications, 8 (2017), 2150

[9] Wang Y., Liu E., Liu H., Pan Y., Zhang L., Zeng J., Fu Y., Wang M., Xu K., Huang Z., Wang Z., Lu H.-Z., Xing D., Wang B., Wan X., Miao F., “Gate-tunable negative longitudinal magnetoresistance in the predicted type-II Weyl semimetal WTe$_{2}$”, Nature Communications, 7 (2016), 13142

[10] Ali M. N., Xiong J., Flynn S., Tao J., Gibson Q. D., Schoop L. M., Liang T., Haldolaarachchige N., Hirschberger M., Ong N. P., Cava R. J., “Large, non-saturating magnetoresistance in WTe$_{2}$”, Nature, 514 (2014), 205–208

[11] Lv Y.-Y., Cao L., Li X., Zhang B.-B., Wang K., Pang B., Ma L., Lin D., Yao S.-H., Zhou J., Chen Y. B., Dong S.-T., Liu W., Lu M.-H., Chen Y., Chen Y.-F., “Composition and temperature dependent phase transition in miscible Mo$_{1-x}$W$_{x}$Te$_{2}$ single crystals”, Scientific Reports, 7 (2017), 44587

[12] Zhao W., Wang X., “Berry phase in quantum oscillations of topological materials”, Advances in Physics: X, 7 (2022), 2064230

[13] Hu J., Xu S.-Y., Ni N., Mao Z., “Transport of topological semimetals”, Annual Review of Materials Research, 49 (2019), 11.1–11.46

[14] Perevalova A.N., Naumov S.V., Podgornykh S.M., Chistyakov V.V., Marchenkova E.B., Fominykh B.M., Marchenkov V.V., “Kinetic properties of a topological semimetal WTe$_{2}$ single crystal”, Physics of Metals and Metallography, 123 (2022), 1061–1067

[15] Perevalova A. N., Naumov S. V., Fominykh B. M., Marchenkova E. B., Liang S. H., Marchenkov V. V., “The Hall effect in single crystals of topological semimetals WTe$_{2}$ and MoTe$_{2}$”, Physics of Metals and Metallography, 125 (2024), 406–411

[16] Perevalova A. N., Naumov S. V., Marchenkov V. V., “Peculiarities of the electro- and magnetotransport in semimetal MoTe$_{2}$”, Metals, 12 (2022), 2089

[17] Luo Y., Li H., Dai Y. M., Miao H., Shi Y. G., Ding H., Taylor A. J., Yarotski D. A., Prasankumar R. P., Thompson J. D., “Hall effect in the extremely large magnetoresistance semimetal WTe$_{2}$”, Applied Physics Letters, 107 (2015), 182411

[18] Chistyakov V.V., Perevalova A.N., Marchenkov V.V., Application of a two-band model for the analysis of galvanomagnetic properties of topological semimetals, Certificate of state registration of the computer program No 2022660290, 01.06.2022 (In Russ.)

[19] Wang Y. L., Thoutam L. R., Xiao Z. L., Hu J., Das S., Mao Z. Q., Wei J., Divan R., Luican-Mayer A., Crabtree G. W., Kwok W. K., “Origin of the turn-on temperature behavior in WTe$_{2}$”, Physical Review B, 92 (2015), 180402(R)

[20] Pei Q. L., Meng W. J., Luo X., Lv H. Y., Chen F. C., Lu W. J., Han Y. Y., Tong P., Song W. H., Hou Y. B., Lu Q. Y., Sun Y. P., “Origin of the turn-on phenomenon in ${T}_{d}\text{\ensuremath{-}}\mathrm{MoT}{\mathrm{e}}_{2}$”, Physical Review B, 96 (2017), 075132