Mots-clés : solid substitution solutions, diffusion
@article{CHFMJ_2024_9_3_a9,
author = {Yu. N. Gusakova and M. A. Kornienko and L. Yu. Kovalenko and V. A. Burmistrov},
title = {Synthesis and investigation of the kinetics of ion exchange in solid solutions of substitution of {{\CYRN}}$^{+}${/{\CYRM}{\cyre}}$^{+}$ {({\CYRM}{\cyre}=Na}$^{+}$, {K}$^{+}$) antimony and phosphorous antimony acids},
journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
pages = {490--500},
year = {2024},
volume = {9},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_3_a9/}
}
TY - JOUR
AU - Yu. N. Gusakova
AU - M. A. Kornienko
AU - L. Yu. Kovalenko
AU - V. A. Burmistrov
TI - Synthesis and investigation of the kinetics of ion exchange in solid solutions of substitution of Н$^{+}$/Ме$^{+}$ (Ме=Na$^{+}$, K$^{+}$) antimony and phosphorous antimony acids
JO - Čelâbinskij fiziko-matematičeskij žurnal
PY - 2024
SP - 490
EP - 500
VL - 9
IS - 3
UR - http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_3_a9/
LA - ru
ID - CHFMJ_2024_9_3_a9
ER -
%0 Journal Article
%A Yu. N. Gusakova
%A M. A. Kornienko
%A L. Yu. Kovalenko
%A V. A. Burmistrov
%T Synthesis and investigation of the kinetics of ion exchange in solid solutions of substitution of Н$^{+}$/Ме$^{+}$ (Ме=Na$^{+}$, K$^{+}$) antimony and phosphorous antimony acids
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2024
%P 490-500
%V 9
%N 3
%U http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_3_a9/
%G ru
%F CHFMJ_2024_9_3_a9
Yu. N. Gusakova; M. A. Kornienko; L. Yu. Kovalenko; V. A. Burmistrov. Synthesis and investigation of the kinetics of ion exchange in solid solutions of substitution of Н$^{+}$/Ме$^{+}$ (Ме=Na$^{+}$, K$^{+}$) antimony and phosphorous antimony acids. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 3, pp. 490-500. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_3_a9/
[1] Stenina I., Golubenko D., Nikonenko V., Yaroslavtsev A., “Selectivity of transport processes in ion-exchange membranes: Relationship with the structure and methods for its improvement”, International Journal of Molecular Sciences, 21:15 (2020), 5517 | DOI
[2] Slade R. C. T., Hall G. P., Ramanan A., Prince E., “Structure and proton conduction in pyrochlore-type antimonic acid: a neutron diffraction study”, Solid State Ionics, 92:3–4 (1996), 171–181 | DOI
[3] Ozawa K., Eguchi M., Nakamura H., Sakka Y., “Bismuth-doping effect on structural properties and proton conductivity of pyrochlore-type antimonic acid”, Solid State Ionics, 172:1–4 (2004), 109–112 | DOI
[4] Kovalenko L.Yu., Burmistrov V.A., Zakhar'evich D.A., Kalganov D.A., “On the mechanism of proton conductivity of polyantimonic acid”, Chelyabinsk Physical and Mathematical Journal, 6:1 (2021), 95–110 | DOI
[5] Kovalenko L.Yu., Burmistrov V.A., Biryukova A.A., “Kinetics of H$^+$/Me$^+$ (Me=Na, K) ion exchange in polyantimonic acid”, Electrochemistry, 52:7 (2016), 694–698 | DOI
[6] Belinskaya F.A., Militsina E.A., “Inorganic ionexchange materials based on insoluble antimony(V) compounds”, Russian Chemical Reviews, 49:10 (1980), 933–952 | DOI
[7] Wells A.F., Structural Inorganic Chemistry, Oxford University Press, Oxford, 1984
[8] Yurovskikh Yu., Burmistrov V.A., “Synthesis and study of the ion-exchange properties of H$^+$/Me$^+$ (Me = Li, Na, K) in polyantimonic acid”, Norwegian Journal of Development of the International Science, 2021, no. 54, 31–36