Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2024_9_3_a6, author = {Kh. V. Yadrikhinskiy}, title = {Invariant solutions and linearized invariant submodels of some option pricing equations}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {446--470}, publisher = {mathdoc}, volume = {9}, number = {3}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_3_a6/} }
TY - JOUR AU - Kh. V. Yadrikhinskiy TI - Invariant solutions and linearized invariant submodels of some option pricing equations JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2024 SP - 446 EP - 470 VL - 9 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_3_a6/ LA - ru ID - CHFMJ_2024_9_3_a6 ER -
Kh. V. Yadrikhinskiy. Invariant solutions and linearized invariant submodels of some option pricing equations. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 3, pp. 446-470. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_3_a6/
[1] Black F., Scholes M., “The pricing of options and corporate liabilities”, Journal of Political Economy, 81 (1973), 637–659 | DOI | MR
[2] Sircar R., Papanicolaou G., “Generalized Black — Scholes models accounting for increased market volatility from hedging strategies”, Applied Mathematical Finance, 5:1 (1998), 45–82 | DOI | Zbl
[3] Schönbucher P., Wilmott P., “The feedback-effect of hedging in illiquid markets”, SIAM Journal on Applied Mathematics, 61 (2000), 232–272 | DOI | MR | Zbl
[4] Guéant O., The financial mathematics of market liquidity: from optimal execution to market making, Chapman and Hall/CRC, London; New York, 2016 | MR
[5] Guéant O., Pu J., “Option pricing and hedging with execution costs and market impact”, Mathematical Finance, 27:3 (2017), 803–831 | DOI | MR
[6] Sitnik S. M., Yadrikhinskiy K. V., Fedorov V. E., “Symmetry analysis of a model of option pricing and hedging”, Symmetry, 14:9 (2022), 1841 | DOI
[7] Yadrikhinskiy K. V., Fedorov V. E., Dyshaev M. M., “Group analysis of the Guéant and Pu model of option pricing and hedging”, Symmetries and Applications of Differential Equations, eds. A. C. J. Luo, R. K. Gazizov, Springer, Singapore, 2021, 173–203 | DOI | MR | Zbl
[8] Yadrikhinskiy K. V., Fedorov V. E., “Invariant solutions of the Guéant and Pu model of option pricing and hedging”, Chelyabinsk Physical and Mathematical Journal, 6:1 (2021), 42–51 (In Russ.) | DOI | Zbl
[9] Abramowitz M., Stegun I.A. (eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards. Applied Mathematics Series, 1964 | MR | Zbl