Invariant solutions and linearized invariant submodels of some option pricing equations
Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 3, pp. 446-470.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some subalgebras of the Lie algebra obtained earlier in the group classification of the option pricing model, taking into account costs and market influence, are considered. For a five-dimensional Lie algebra, invariant submodels are found in the case of one-dimensional subalgebras and invariant solutions are derived in the case of two-dimensional subalgebras of a general type. For three six-dimensional Lie algebras, one-dimensional and two-dimensional subalgebras are considered and exact solutions for a number of linearized invariant submodels are obtained.
Keywords: Black — Scholes type equation, group analysis, admissible group, Lie algebra, invariant submodel, invariant solution.
@article{CHFMJ_2024_9_3_a6,
     author = {Kh. V. Yadrikhinskiy},
     title = {Invariant solutions and linearized invariant submodels of some  option pricing  equations},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {446--470},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_3_a6/}
}
TY  - JOUR
AU  - Kh. V. Yadrikhinskiy
TI  - Invariant solutions and linearized invariant submodels of some  option pricing  equations
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2024
SP  - 446
EP  - 470
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_3_a6/
LA  - ru
ID  - CHFMJ_2024_9_3_a6
ER  - 
%0 Journal Article
%A Kh. V. Yadrikhinskiy
%T Invariant solutions and linearized invariant submodels of some  option pricing  equations
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2024
%P 446-470
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_3_a6/
%G ru
%F CHFMJ_2024_9_3_a6
Kh. V. Yadrikhinskiy. Invariant solutions and linearized invariant submodels of some  option pricing  equations. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 3, pp. 446-470. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_3_a6/

[1] Black F., Scholes M., “The pricing of options and corporate liabilities”, Journal of Political Economy, 81 (1973), 637–659 | DOI | MR

[2] Sircar R., Papanicolaou G., “Generalized Black — Scholes models accounting for increased market volatility from hedging strategies”, Applied Mathematical Finance, 5:1 (1998), 45–82 | DOI | Zbl

[3] Schönbucher P., Wilmott P., “The feedback-effect of hedging in illiquid markets”, SIAM Journal on Applied Mathematics, 61 (2000), 232–272 | DOI | MR | Zbl

[4] Guéant O., The financial mathematics of market liquidity: from optimal execution to market making, Chapman and Hall/CRC, London; New York, 2016 | MR

[5] Guéant O., Pu J., “Option pricing and hedging with execution costs and market impact”, Mathematical Finance, 27:3 (2017), 803–831 | DOI | MR

[6] Sitnik S. M., Yadrikhinskiy K. V., Fedorov V. E., “Symmetry analysis of a model of option pricing and hedging”, Symmetry, 14:9 (2022), 1841 | DOI

[7] Yadrikhinskiy K. V., Fedorov V. E., Dyshaev M. M., “Group analysis of the Guéant and Pu model of option pricing and hedging”, Symmetries and Applications of Differential Equations, eds. A. C. J. Luo, R. K. Gazizov, Springer, Singapore, 2021, 173–203 | DOI | MR | Zbl

[8] Yadrikhinskiy K. V., Fedorov V. E., “Invariant solutions of the Guéant and Pu model of option pricing and hedging”, Chelyabinsk Physical and Mathematical Journal, 6:1 (2021), 42–51 (In Russ.) | DOI | Zbl

[9] Abramowitz M., Stegun I.A. (eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards. Applied Mathematics Series, 1964 | MR | Zbl