Invariant solutions and linearized invariant submodels of some option pricing equations
Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 3, pp. 446-470

Voir la notice de l'article provenant de la source Math-Net.Ru

Some subalgebras of the Lie algebra obtained earlier in the group classification of the option pricing model, taking into account costs and market influence, are considered. For a five-dimensional Lie algebra, invariant submodels are found in the case of one-dimensional subalgebras and invariant solutions are derived in the case of two-dimensional subalgebras of a general type. For three six-dimensional Lie algebras, one-dimensional and two-dimensional subalgebras are considered and exact solutions for a number of linearized invariant submodels are obtained.
Keywords: Black — Scholes type equation, group analysis, admissible group, Lie algebra, invariant submodel, invariant solution.
@article{CHFMJ_2024_9_3_a6,
     author = {Kh. V. Yadrikhinskiy},
     title = {Invariant solutions and linearized invariant submodels of some  option pricing  equations},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {446--470},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_3_a6/}
}
TY  - JOUR
AU  - Kh. V. Yadrikhinskiy
TI  - Invariant solutions and linearized invariant submodels of some  option pricing  equations
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2024
SP  - 446
EP  - 470
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_3_a6/
LA  - ru
ID  - CHFMJ_2024_9_3_a6
ER  - 
%0 Journal Article
%A Kh. V. Yadrikhinskiy
%T Invariant solutions and linearized invariant submodels of some  option pricing  equations
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2024
%P 446-470
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_3_a6/
%G ru
%F CHFMJ_2024_9_3_a6
Kh. V. Yadrikhinskiy. Invariant solutions and linearized invariant submodels of some  option pricing  equations. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 3, pp. 446-470. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_3_a6/