Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2024_9_3_a4, author = {A. G. Podgaev}, title = {A problem with a free boundary for nonlinear equation with a change in the direction of evolution}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {407--425}, publisher = {mathdoc}, volume = {9}, number = {3}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_3_a4/} }
TY - JOUR AU - A. G. Podgaev TI - A problem with a free boundary for nonlinear equation with a change in the direction of evolution JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2024 SP - 407 EP - 425 VL - 9 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_3_a4/ LA - ru ID - CHFMJ_2024_9_3_a4 ER -
%0 Journal Article %A A. G. Podgaev %T A problem with a free boundary for nonlinear equation with a change in the direction of evolution %J Čelâbinskij fiziko-matematičeskij žurnal %D 2024 %P 407-425 %V 9 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_3_a4/ %G ru %F CHFMJ_2024_9_3_a4
A. G. Podgaev. A problem with a free boundary for nonlinear equation with a change in the direction of evolution. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 3, pp. 407-425. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_3_a4/
[1] Gevrey M., “Sur certaines equations aux derivees partielles du type parabolique”, Comptes Rendus de l'Académie des Sciences, 154 (1912), 1785–1788
[2] Gevrey M., “Sur les equations aux derivees partielles du type parabolique. IV”, Journal de Mathématiques Pures et Appliquées, 10 (1914), 105–137
[3] Tersenov S.A., Introduction to the theory of equations of parabolic type with varying direction of time, Mathematics Institute of SB of USSR Academy of Sciences, Novosibirsk, 1982 (In Russ.) | MR
[4] Tersenov S.A., Parabolic equations with changing direction of time, Nauka, SB of USSR Academy of Sciences, Novosibirsk, 1985 (In Russ.)
[5] Tersenov S.A., “On some problems for forward-backward parabolic equations”, Siberian Mathematical Journal, 51:2 (2010), 338–345 | DOI | MR | Zbl
[6] Egorov I.E., “The first boundary-value problem for a singular parabolic equation”, Siberian Mathematical Journal, 17:1 (1976), 174–177 | DOI | MR | Zbl
[7] Pyatkov S.G., “On the solvability of a boundary value problem for a parabolic equation with a changing direction of time”, Reports of USSR Academy of Sciences, 285:6 (1985), 1327–1329 (In Russ.) | MR | Zbl
[8] Egorov I.E., “First boundary problem for a nonclassical equation”, Mathematical Notes, 42:3–4 (1987), 716–721 | DOI | MR | Zbl
[9] Egorov I.E., Pyatkov S.G., Popov S.V., Nonclassical differential operator equations, Nauka Publ., Novosibirsk, 2000 (In Russ.)
[10] Pyatkov S. G., Operator theory. Nonclassical problems, VSP, Utrecht; Boston; Köln; Tokyo, 2002 | MR | Zbl
[11] Popov S.V., “On the smoothness of solutions to parabolic equations with varying rule of evolution”, Reports of USSR Academy of Sciences, 400:1 (2005), 29–31 (In Russ.) | MR
[12] Popov S.V., Potapova S.V., “Hölder classes of solutions to $2n$-parabolic equations with a varying direction of evolution”, Doklady Mathematics, 79:1 (2009), 100–102 | DOI | MR | Zbl
[13] Popov S.V., “Holder classes of solutions to parabolic equations of the fourth order with a changing direction of time with variable gluing conditions”, Mathematical Notes of NEFU, 21:2 (2014), 81–93 (In Russ.) | MR | Zbl
[14] Sin A.Z., Study of initial boundary value problems for some model ultra-parabolic equations, Pacific State University, Khabarovsk, 2014 (In Russ.)
[15] Egorov I. E., Fedorov V. E., Tikhonova I. M., Efimova E. S., “The Galerkin method for nonclassical equations of mathematical physics”, AIP Conference Proceedings, 1907 (2017), 020011 | DOI
[16] Kozhanov A.I., Potapova S.V., “Boundary value problems for odd order forward-backward-type differential equations with two time variables”, Siberian Mathematical Journal, 59:5 (2018), 870–884 | DOI | MR | Zbl
[17] Kozhanov A.I., Matsiyevskaya E.E., “Degenerate parabolic equations with variable management of evolution”, Siberian Electronic Mathematical Reports, 16 (2019), 718–731 (In Russ.) | MR | Zbl
[18] Popov S.V., “Parabolic equations with changing direction of time”, Doklady Mathematics, 101:2 (2020), 147–149 | DOI | MR | Zbl
[19] Kozhanov A. I., Shadrina N. N., “Boundary value problems with conjugation conditions for quasi-parabolic equations of the third order with a discontinuous sign–variable coefficient”, Siberian Mathematical Journal, 18:1 (2021), 599–616 | MR | Zbl
[20] Podgaev A.G., “Solvability of an axisymmetric problem for a nonlinear parabolic equation in domains with non-cylindrical or unknown boundaries. I”, Chelyabinsk Physical and Mathematical Journal, 5:1 (2020), 44–55 (In Russ.) | MR | Zbl
[21] Podgaev A. G., “Solvability of an axisymmetric problem for a nonlinear parabolic equation in domains with non-cylindrical or unknown boundaries. II”, Chelyabinsk Physical and Mathematical Journal, 7:1 (2022), 43–53 (In Russ.) | DOI | MR | Zbl
[22] Podgaev A.G., “On relative compactness of a set of abstract functions in a scale of Banach spaces”, Siberian Mathematical Journal, 34:2 (1993), 320–329 | DOI | MR | Zbl
[23] Podgaev A.G., Lisenkov K.V., “Solvability of a quasilinear parabolic equation in a region with a piecewise monotonic boundary”, Far Eastern Mathematical Journal, 13:2 (2013), 250–272 (In Russ.) | MR | Zbl
[24] Podgaev A.G., Sin A.Z., “On a generalization of the Vishik — Dubinskiy lemma and the Gronwall inequality”, Scientific Notes of Pacific National University, 4:4 (2013), 2113–2118 (In Russ.)
[25] Ladyzhenskaya O.A., Ural’tseva N.N., Linear and Quasi-Linear Elliptic Equations, Academic Press, New York, 1968 | MR | MR
[26] Podgaev A.G., Kulesh T.D., “Compactness theorems for problems with an unknown boundary”, Far Eastern Mathematical Journal, 21:1 (2021), 105–112 (In Russ.) | MR | Zbl