A problem with a free boundary for nonlinear equation with a change in the direction of evolution
Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 3, pp. 407-425.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the regular solvability of a problem with axial symmetry for a quasilinear multidimensional equation with a change in the direction of parabolicity and an unknown type change boundary from the class $W_2^1$. On this unknown boundary of the change in the direction of evolution, a condition similar to the Stefan condition is set, in which the constant (playing, in the case of the Stefan problem for the heat equation, the role of the latent specific heat of melting of the substance) is also unknown.
Keywords: non-linear parabolic equation, non-cylindrical region, forward-backward parabolic equation, free boundary, Stefan condition, compactness theorem.
@article{CHFMJ_2024_9_3_a4,
     author = {A. G. Podgaev},
     title = {A problem with a free boundary  for nonlinear equation with a change in the direction of evolution},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {407--425},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_3_a4/}
}
TY  - JOUR
AU  - A. G. Podgaev
TI  - A problem with a free boundary  for nonlinear equation with a change in the direction of evolution
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2024
SP  - 407
EP  - 425
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_3_a4/
LA  - ru
ID  - CHFMJ_2024_9_3_a4
ER  - 
%0 Journal Article
%A A. G. Podgaev
%T A problem with a free boundary  for nonlinear equation with a change in the direction of evolution
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2024
%P 407-425
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_3_a4/
%G ru
%F CHFMJ_2024_9_3_a4
A. G. Podgaev. A problem with a free boundary  for nonlinear equation with a change in the direction of evolution. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 3, pp. 407-425. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_3_a4/

[1] Gevrey M., “Sur certaines equations aux derivees partielles du type parabolique”, Comptes Rendus de l'Académie des Sciences, 154 (1912), 1785–1788

[2] Gevrey M., “Sur les equations aux derivees partielles du type parabolique. IV”, Journal de Mathématiques Pures et Appliquées, 10 (1914), 105–137

[3] Tersenov S.A., Introduction to the theory of equations of parabolic type with varying direction of time, Mathematics Institute of SB of USSR Academy of Sciences, Novosibirsk, 1982 (In Russ.) | MR

[4] Tersenov S.A., Parabolic equations with changing direction of time, Nauka, SB of USSR Academy of Sciences, Novosibirsk, 1985 (In Russ.)

[5] Tersenov S.A., “On some problems for forward-backward parabolic equations”, Siberian Mathematical Journal, 51:2 (2010), 338–345 | DOI | MR | Zbl

[6] Egorov I.E., “The first boundary-value problem for a singular parabolic equation”, Siberian Mathematical Journal, 17:1 (1976), 174–177 | DOI | MR | Zbl

[7] Pyatkov S.G., “On the solvability of a boundary value problem for a parabolic equation with a changing direction of time”, Reports of USSR Academy of Sciences, 285:6 (1985), 1327–1329 (In Russ.) | MR | Zbl

[8] Egorov I.E., “First boundary problem for a nonclassical equation”, Mathematical Notes, 42:3–4 (1987), 716–721 | DOI | MR | Zbl

[9] Egorov I.E., Pyatkov S.G., Popov S.V., Nonclassical differential operator equations, Nauka Publ., Novosibirsk, 2000 (In Russ.)

[10] Pyatkov S. G., Operator theory. Nonclassical problems, VSP, Utrecht; Boston; Köln; Tokyo, 2002 | MR | Zbl

[11] Popov S.V., “On the smoothness of solutions to parabolic equations with varying rule of evolution”, Reports of USSR Academy of Sciences, 400:1 (2005), 29–31 (In Russ.) | MR

[12] Popov S.V., Potapova S.V., “Hölder classes of solutions to $2n$-parabolic equations with a varying direction of evolution”, Doklady Mathematics, 79:1 (2009), 100–102 | DOI | MR | Zbl

[13] Popov S.V., “Holder classes of solutions to parabolic equations of the fourth order with a changing direction of time with variable gluing conditions”, Mathematical Notes of NEFU, 21:2 (2014), 81–93 (In Russ.) | MR | Zbl

[14] Sin A.Z., Study of initial boundary value problems for some model ultra-parabolic equations, Pacific State University, Khabarovsk, 2014 (In Russ.)

[15] Egorov I. E., Fedorov V. E., Tikhonova I. M., Efimova E. S., “The Galerkin method for nonclassical equations of mathematical physics”, AIP Conference Proceedings, 1907 (2017), 020011 | DOI

[16] Kozhanov A.I., Potapova S.V., “Boundary value problems for odd order forward-backward-type differential equations with two time variables”, Siberian Mathematical Journal, 59:5 (2018), 870–884 | DOI | MR | Zbl

[17] Kozhanov A.I., Matsiyevskaya E.E., “Degenerate parabolic equations with variable management of evolution”, Siberian Electronic Mathematical Reports, 16 (2019), 718–731 (In Russ.) | MR | Zbl

[18] Popov S.V., “Parabolic equations with changing direction of time”, Doklady Mathematics, 101:2 (2020), 147–149 | DOI | MR | Zbl

[19] Kozhanov A. I., Shadrina N. N., “Boundary value problems with conjugation conditions for quasi-parabolic equations of the third order with a discontinuous sign–variable coefficient”, Siberian Mathematical Journal, 18:1 (2021), 599–616 | MR | Zbl

[20] Podgaev A.G., “Solvability of an axisymmetric problem for a nonlinear parabolic equation in domains with non-cylindrical or unknown boundaries. I”, Chelyabinsk Physical and Mathematical Journal, 5:1 (2020), 44–55 (In Russ.) | MR | Zbl

[21] Podgaev A. G., “Solvability of an axisymmetric problem for a nonlinear parabolic equation in domains with non-cylindrical or unknown boundaries. II”, Chelyabinsk Physical and Mathematical Journal, 7:1 (2022), 43–53 (In Russ.) | DOI | MR | Zbl

[22] Podgaev A.G., “On relative compactness of a set of abstract functions in a scale of Banach spaces”, Siberian Mathematical Journal, 34:2 (1993), 320–329 | DOI | MR | Zbl

[23] Podgaev A.G., Lisenkov K.V., “Solvability of a quasilinear parabolic equation in a region with a piecewise monotonic boundary”, Far Eastern Mathematical Journal, 13:2 (2013), 250–272 (In Russ.) | MR | Zbl

[24] Podgaev A.G., Sin A.Z., “On a generalization of the Vishik — Dubinskiy lemma and the Gronwall inequality”, Scientific Notes of Pacific National University, 4:4 (2013), 2113–2118 (In Russ.)

[25] Ladyzhenskaya O.A., Ural’tseva N.N., Linear and Quasi-Linear Elliptic Equations, Academic Press, New York, 1968 | MR | MR

[26] Podgaev A.G., Kulesh T.D., “Compactness theorems for problems with an unknown boundary”, Far Eastern Mathematical Journal, 21:1 (2021), 105–112 (In Russ.) | MR | Zbl