Direct and inverse problems for linear equations with Caputo~--- Fabrizio derivative and a bounded operator
Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 3, pp. 389-406

Voir la notice de l'article provenant de la source Math-Net.Ru

The unique solvability of linear inverse coefficient problems for the evolutionary equation in a Banach space with the Caputo — Fabrizio derivative is studied. An operator at the unknown function in the equation is assumed to be bounded, the equation is endowed with the Cauchy condition. For the inverse problem with a constant unknown coefficient and with an integral overdefinition condition in the sense of Riemann — Stieltjes, which includes the condition of final overdefinition as a special case, a well-posedness criterion is obtained. Sufficient conditions for unique solvability and an estimate of the well-posedness for the solution are obtained for a linear inverse problem with a time-dependent unknown coefficient. The abstract results obtained are used in the study of inverse problems with an unknown coefficient depending only on spatial variables or only on time, for equations with polynomials of a self-adjoint elliptic differential operator with respect to spatial variables.
Keywords: Caputo — Fabrizio derivative, evolution equation, inverse coefficient problem.
@article{CHFMJ_2024_9_3_a3,
     author = {A. V. Nagumanova and V. E. Fedorov},
     title = {Direct and inverse problems for linear equations with {Caputo~---} {Fabrizio} derivative and a bounded operator},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {389--406},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_3_a3/}
}
TY  - JOUR
AU  - A. V. Nagumanova
AU  - V. E. Fedorov
TI  - Direct and inverse problems for linear equations with Caputo~--- Fabrizio derivative and a bounded operator
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2024
SP  - 389
EP  - 406
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_3_a3/
LA  - ru
ID  - CHFMJ_2024_9_3_a3
ER  - 
%0 Journal Article
%A A. V. Nagumanova
%A V. E. Fedorov
%T Direct and inverse problems for linear equations with Caputo~--- Fabrizio derivative and a bounded operator
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2024
%P 389-406
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_3_a3/
%G ru
%F CHFMJ_2024_9_3_a3
A. V. Nagumanova; V. E. Fedorov. Direct and inverse problems for linear equations with Caputo~--- Fabrizio derivative and a bounded operator. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 3, pp. 389-406. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_3_a3/