Direct and inverse problems for linear equations with Caputo~--- Fabrizio derivative and a bounded operator
Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 3, pp. 389-406.

Voir la notice de l'article provenant de la source Math-Net.Ru

The unique solvability of linear inverse coefficient problems for the evolutionary equation in a Banach space with the Caputo — Fabrizio derivative is studied. An operator at the unknown function in the equation is assumed to be bounded, the equation is endowed with the Cauchy condition. For the inverse problem with a constant unknown coefficient and with an integral overdefinition condition in the sense of Riemann — Stieltjes, which includes the condition of final overdefinition as a special case, a well-posedness criterion is obtained. Sufficient conditions for unique solvability and an estimate of the well-posedness for the solution are obtained for a linear inverse problem with a time-dependent unknown coefficient. The abstract results obtained are used in the study of inverse problems with an unknown coefficient depending only on spatial variables or only on time, for equations with polynomials of a self-adjoint elliptic differential operator with respect to spatial variables.
Keywords: Caputo — Fabrizio derivative, evolution equation, inverse coefficient problem.
@article{CHFMJ_2024_9_3_a3,
     author = {A. V. Nagumanova and V. E. Fedorov},
     title = {Direct and inverse problems for linear equations with {Caputo~---} {Fabrizio} derivative and a bounded operator},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {389--406},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_3_a3/}
}
TY  - JOUR
AU  - A. V. Nagumanova
AU  - V. E. Fedorov
TI  - Direct and inverse problems for linear equations with Caputo~--- Fabrizio derivative and a bounded operator
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2024
SP  - 389
EP  - 406
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_3_a3/
LA  - ru
ID  - CHFMJ_2024_9_3_a3
ER  - 
%0 Journal Article
%A A. V. Nagumanova
%A V. E. Fedorov
%T Direct and inverse problems for linear equations with Caputo~--- Fabrizio derivative and a bounded operator
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2024
%P 389-406
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_3_a3/
%G ru
%F CHFMJ_2024_9_3_a3
A. V. Nagumanova; V. E. Fedorov. Direct and inverse problems for linear equations with Caputo~--- Fabrizio derivative and a bounded operator. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 3, pp. 389-406. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_3_a3/

[1] Kozhanov A. I., Composite Type Equations and Inverse Problems, VSP, Utrecht, 1999 | MR | Zbl

[2] Prilepko A. I., Orlovskii D. G., Vasin I. A., Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, Inc., New York, Basel, 2000 | MR | Zbl

[3] Tikhonov I.V., Eidelman Yu.S., “An inverse problem for a differential equation in a Banach space and the distribution of zeros of an entire Mittag-Leffler function”, Differential Equations, 38:5 (2002), 637–644 | DOI | MR | Zbl

[4] Abasheeva N. L., “Some inverse problems for parabolic equations with changing time direction”, Journal of Inverse and Ill-Posed Problems, 12:4 (2004), 337–348 | DOI | MR | Zbl

[5] Fedorov V. E., Urazaeva A. V., “An inverse problem for linear Sobolev type equations”, Journal of Inverse and Ill-Posed Problems, 12:4 (2004), 387–395 | DOI | MR | Zbl

[6] Favini A., Lorenzi A., Differential Equations. Inverse and Direct Problems, Chapman and Hall/CRC, New York, 2006 | MR

[7] Falaleev M.V., “Degenerated abstract problem of prediction-control in Banach spaces”, Bulletin of Irkutsk State University. Ser. Mathematics, 3:1 (2010), 126–132 | Zbl

[8] Pyatkov S.G., Samkov M.L., “On some classes of coefficient inverse problems for parabolic systems of equations”, Siberian Advances in Mathematics, 22:1 (2012), 287–302 | DOI | MR | Zbl

[9] Al Horani M., Favini A., “Degenerate first-order inverse problems in Banach spaces”, Nonlinear Analysis, 75:1 (2012), 68–77 | DOI | MR | Zbl

[10] Glushak A.V., “On an inverse problem for an abstract differential equation of fractional order”, Mathematical Notes, 87:5 (2010), 654–662 | DOI | DOI | MR | Zbl

[11] Orlovsky D. G., “Parameter determination in a differentia equation of fractional order with Riemann — Liouville fractional derivative in a Hilbert space”, Zhurn. Sib. feder. un-ta. Matematika i fizika, 8:1 (2015), 55–63 | MR | Zbl

[12] Fedorov V. E., Nazhimov R. R., “Inverse problems for a class of degenerate evolution equations with Riemann — Liouville derivative”, Fractional Calculus and Applied Analysis, 22:2 (2019), 271–286 | DOI | MR | Zbl

[13] Fedorov V. E., Nagumanova A. V., Avilovich A. S., “A class of inverse problems for evolution equations with the Riemann — Liouville derivative in the sectorial case”, Mathematical Methods in the Applied Sciences, 44:15 (2021), 11961–11969 | DOI | MR | Zbl

[14] Fedorov V. E., Ivanova N. D., “Identification problem for degenerate evolution equations of fractional order”, Fractional Calculus and Applied Analysis, 20:3 (2017), 706–721 | DOI | MR | Zbl

[15] Orlovsky D. G., “Determination of the parameter of the differential equation of fractional order with the Caputo derivative in Hilbert space”, Journal of Physics: Conference Series, 1205:1 (2019), 012042 | DOI | MR

[16] Fedorov V.E., Kostić M., “Identification problem for strongly degenerate evolution equations with the Gerasimov — Caputo derivative”, Differential Equations, 56:12 (2020), 1613–1627 | DOI | DOI | MR | MR | Zbl

[17] Fedorov V. E., Nagumanova A. V., Kostić M., “A class of inverse problems for fractional order degenerate evolution equations”, Journal of Inverse and Ill-Posed Problems, 29:2 (2021), 173–184 | DOI | MR | Zbl

[18] Ashurov R.R., Faiziev Yu.É., “Inverse problem for finding the order of the fractional derivative in the wave equation”, Mathematical Notes, 110:6 (2021), 842–852 | DOI | DOI | MR | Zbl

[19] Kostin A. B., Piskarev S. I., “Inverse source problem for the abstract fractional differential equation”, Journal of Inverse and Ill-Posed Problems, 29:2 (2021), 267–281 | DOI | MR | Zbl

[20] Orlovsky D., Piskarev S., “Inverse problem with final overdetermination for time-fractional differential equation in a Banach space”, Journal of Inverse and Ill-Posed Problems, 30:2 (2022), 221–237 | DOI | MR | Zbl

[21] Fedorov V. E., Ivanova N. D., Borel L. V., Avilovich A. S., “Nonlinear inverse problems for fractional differential equations with sectorial operators”, Lobachevskii Journal of Mathematics, 43:11 (2022), 3125–3141 | DOI | MR

[22] Fedorov V. E., Nagumanova A. V., “Inverse linear problems for a certain class of degenerate fractional evolution equations”, Journal of Mathematica Sciences, 260:3 (2022), 371–386 | DOI | Zbl

[23] Fedorov V.E., Plekhanova M.V., Ivanova N.D., Shuklina A.F., Filin N.V., “Nonlinear inverse problems for some equations with fractional derivatives”, Chelyabinsk Physical and Mathematical Journal, 8:2 (2023), 190–202 (In Russ.) | MR | Zbl

[24] Fedorov V. E., Plekhanova M. V., Melekhina D. V., “Nonlinear inverse problems for equations with Dzhrbashyan — Nersesyan derivatives”, Fractal and Fractional, 7:6 (2023), 464 | DOI

[25] Fedorov V. E., Plekhanova M. V., Melekhina D. V., “On local unique solvability for a class of nonlinear identification problems”, Axioms, 12:11 (2023), 1013 | DOI

[26] Caputo M., Fabrizio M., “A new definition of fractional derivative without singular kernel”, Progress in Fractional Differentiation and Applications, 1:2 (2015), 73–85

[27] Al-Salti N., Karimov E., Sadarangani K., “On a differential equation with Caputo — Fabrizio fractional derivative of order $1\beta2$ and application to mass-spring-damper system”, Progress in Fractional Differentiation and Applications, 2 (2016), 257–263 | DOI

[28] Losada J., Nieto J. J., “Properties of a new fractional derivative without singular kernel”, Progress in Fractional Differentiation and Applications, 1:2 (2015), 87–92

[29] Al-Refai M., Abdeljawad T., “Analysis of the fractional diffusion equations with fractional derivative of non-singular kernel”, Advances in Difference Equations, 2017 (2017), 1–12 | DOI | MR

[30] Gomez-Aguilar J. F., Torres L., Yepez-Martinez H., Calderon-Ramon C., Cruz-Orduna I., Escobar-Jimenez V. H., Olivares-Peregrino R. F., “Modeling of a mass-spring-damper system by fractional derivatives with and without a singular kernel”, Entropy, 17 (2015), 6289–6303 | DOI | MR | Zbl

[31] Alkahtani B., Atangana A., “Controlling the wave movement on the surface of shallow water with the Caputo — Fabrizio derivative with fractional order”, Chaos Solitons Fractals, 89 (2016), 539–546 | DOI | MR | Zbl

[32] Caputo M., Fabrizio M., “Applications of new time and spatial fractional derivatives with exponential kernels”, Progress in Fractional Differentiation and Applications, 2 (2016), 1–11 | DOI

[33] Gomez-Aguilar J. F., Torres L., Yepez-Martinez H., Baleanu D., Reyes J. M., Sosa I. O., “Fractional Lienard tyme model of a pipeline within the fractional derivative without singular kernel”, Advances in Difference Equations, 2016 (2016), 1–13 | DOI | MR

[34] Tuan N. H., Mohammadi H., Rezapour S., “A mathematical model for COVID-19 transmission by using the caputo fractional derivative”, Chaos, Solitons, and Fractals, 140 (2020), 110107 | DOI | MR | Zbl

[35] LePage W. R., Complex Variables and the Laplace Transforn for Engineers, Dover Publ., New York, 1961 | MR

[36] Triebel H., Interpolation Theory, Function Spaces, Differential Operators, Deutscher Verlag des Wissenschaften, Berlin, 1978 | MR | Zbl