Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2024_9_3_a3, author = {A. V. Nagumanova and V. E. Fedorov}, title = {Direct and inverse problems for linear equations with {Caputo~---} {Fabrizio} derivative and a bounded operator}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {389--406}, publisher = {mathdoc}, volume = {9}, number = {3}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_3_a3/} }
TY - JOUR AU - A. V. Nagumanova AU - V. E. Fedorov TI - Direct and inverse problems for linear equations with Caputo~--- Fabrizio derivative and a bounded operator JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2024 SP - 389 EP - 406 VL - 9 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_3_a3/ LA - ru ID - CHFMJ_2024_9_3_a3 ER -
%0 Journal Article %A A. V. Nagumanova %A V. E. Fedorov %T Direct and inverse problems for linear equations with Caputo~--- Fabrizio derivative and a bounded operator %J Čelâbinskij fiziko-matematičeskij žurnal %D 2024 %P 389-406 %V 9 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_3_a3/ %G ru %F CHFMJ_2024_9_3_a3
A. V. Nagumanova; V. E. Fedorov. Direct and inverse problems for linear equations with Caputo~--- Fabrizio derivative and a bounded operator. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 3, pp. 389-406. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_3_a3/
[1] Kozhanov A. I., Composite Type Equations and Inverse Problems, VSP, Utrecht, 1999 | MR | Zbl
[2] Prilepko A. I., Orlovskii D. G., Vasin I. A., Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, Inc., New York, Basel, 2000 | MR | Zbl
[3] Tikhonov I.V., Eidelman Yu.S., “An inverse problem for a differential equation in a Banach space and the distribution of zeros of an entire Mittag-Leffler function”, Differential Equations, 38:5 (2002), 637–644 | DOI | MR | Zbl
[4] Abasheeva N. L., “Some inverse problems for parabolic equations with changing time direction”, Journal of Inverse and Ill-Posed Problems, 12:4 (2004), 337–348 | DOI | MR | Zbl
[5] Fedorov V. E., Urazaeva A. V., “An inverse problem for linear Sobolev type equations”, Journal of Inverse and Ill-Posed Problems, 12:4 (2004), 387–395 | DOI | MR | Zbl
[6] Favini A., Lorenzi A., Differential Equations. Inverse and Direct Problems, Chapman and Hall/CRC, New York, 2006 | MR
[7] Falaleev M.V., “Degenerated abstract problem of prediction-control in Banach spaces”, Bulletin of Irkutsk State University. Ser. Mathematics, 3:1 (2010), 126–132 | Zbl
[8] Pyatkov S.G., Samkov M.L., “On some classes of coefficient inverse problems for parabolic systems of equations”, Siberian Advances in Mathematics, 22:1 (2012), 287–302 | DOI | MR | Zbl
[9] Al Horani M., Favini A., “Degenerate first-order inverse problems in Banach spaces”, Nonlinear Analysis, 75:1 (2012), 68–77 | DOI | MR | Zbl
[10] Glushak A.V., “On an inverse problem for an abstract differential equation of fractional order”, Mathematical Notes, 87:5 (2010), 654–662 | DOI | DOI | MR | Zbl
[11] Orlovsky D. G., “Parameter determination in a differentia equation of fractional order with Riemann — Liouville fractional derivative in a Hilbert space”, Zhurn. Sib. feder. un-ta. Matematika i fizika, 8:1 (2015), 55–63 | MR | Zbl
[12] Fedorov V. E., Nazhimov R. R., “Inverse problems for a class of degenerate evolution equations with Riemann — Liouville derivative”, Fractional Calculus and Applied Analysis, 22:2 (2019), 271–286 | DOI | MR | Zbl
[13] Fedorov V. E., Nagumanova A. V., Avilovich A. S., “A class of inverse problems for evolution equations with the Riemann — Liouville derivative in the sectorial case”, Mathematical Methods in the Applied Sciences, 44:15 (2021), 11961–11969 | DOI | MR | Zbl
[14] Fedorov V. E., Ivanova N. D., “Identification problem for degenerate evolution equations of fractional order”, Fractional Calculus and Applied Analysis, 20:3 (2017), 706–721 | DOI | MR | Zbl
[15] Orlovsky D. G., “Determination of the parameter of the differential equation of fractional order with the Caputo derivative in Hilbert space”, Journal of Physics: Conference Series, 1205:1 (2019), 012042 | DOI | MR
[16] Fedorov V.E., Kostić M., “Identification problem for strongly degenerate evolution equations with the Gerasimov — Caputo derivative”, Differential Equations, 56:12 (2020), 1613–1627 | DOI | DOI | MR | MR | Zbl
[17] Fedorov V. E., Nagumanova A. V., Kostić M., “A class of inverse problems for fractional order degenerate evolution equations”, Journal of Inverse and Ill-Posed Problems, 29:2 (2021), 173–184 | DOI | MR | Zbl
[18] Ashurov R.R., Faiziev Yu.É., “Inverse problem for finding the order of the fractional derivative in the wave equation”, Mathematical Notes, 110:6 (2021), 842–852 | DOI | DOI | MR | Zbl
[19] Kostin A. B., Piskarev S. I., “Inverse source problem for the abstract fractional differential equation”, Journal of Inverse and Ill-Posed Problems, 29:2 (2021), 267–281 | DOI | MR | Zbl
[20] Orlovsky D., Piskarev S., “Inverse problem with final overdetermination for time-fractional differential equation in a Banach space”, Journal of Inverse and Ill-Posed Problems, 30:2 (2022), 221–237 | DOI | MR | Zbl
[21] Fedorov V. E., Ivanova N. D., Borel L. V., Avilovich A. S., “Nonlinear inverse problems for fractional differential equations with sectorial operators”, Lobachevskii Journal of Mathematics, 43:11 (2022), 3125–3141 | DOI | MR
[22] Fedorov V. E., Nagumanova A. V., “Inverse linear problems for a certain class of degenerate fractional evolution equations”, Journal of Mathematica Sciences, 260:3 (2022), 371–386 | DOI | Zbl
[23] Fedorov V.E., Plekhanova M.V., Ivanova N.D., Shuklina A.F., Filin N.V., “Nonlinear inverse problems for some equations with fractional derivatives”, Chelyabinsk Physical and Mathematical Journal, 8:2 (2023), 190–202 (In Russ.) | MR | Zbl
[24] Fedorov V. E., Plekhanova M. V., Melekhina D. V., “Nonlinear inverse problems for equations with Dzhrbashyan — Nersesyan derivatives”, Fractal and Fractional, 7:6 (2023), 464 | DOI
[25] Fedorov V. E., Plekhanova M. V., Melekhina D. V., “On local unique solvability for a class of nonlinear identification problems”, Axioms, 12:11 (2023), 1013 | DOI
[26] Caputo M., Fabrizio M., “A new definition of fractional derivative without singular kernel”, Progress in Fractional Differentiation and Applications, 1:2 (2015), 73–85
[27] Al-Salti N., Karimov E., Sadarangani K., “On a differential equation with Caputo — Fabrizio fractional derivative of order $1\beta2$ and application to mass-spring-damper system”, Progress in Fractional Differentiation and Applications, 2 (2016), 257–263 | DOI
[28] Losada J., Nieto J. J., “Properties of a new fractional derivative without singular kernel”, Progress in Fractional Differentiation and Applications, 1:2 (2015), 87–92
[29] Al-Refai M., Abdeljawad T., “Analysis of the fractional diffusion equations with fractional derivative of non-singular kernel”, Advances in Difference Equations, 2017 (2017), 1–12 | DOI | MR
[30] Gomez-Aguilar J. F., Torres L., Yepez-Martinez H., Calderon-Ramon C., Cruz-Orduna I., Escobar-Jimenez V. H., Olivares-Peregrino R. F., “Modeling of a mass-spring-damper system by fractional derivatives with and without a singular kernel”, Entropy, 17 (2015), 6289–6303 | DOI | MR | Zbl
[31] Alkahtani B., Atangana A., “Controlling the wave movement on the surface of shallow water with the Caputo — Fabrizio derivative with fractional order”, Chaos Solitons Fractals, 89 (2016), 539–546 | DOI | MR | Zbl
[32] Caputo M., Fabrizio M., “Applications of new time and spatial fractional derivatives with exponential kernels”, Progress in Fractional Differentiation and Applications, 2 (2016), 1–11 | DOI
[33] Gomez-Aguilar J. F., Torres L., Yepez-Martinez H., Baleanu D., Reyes J. M., Sosa I. O., “Fractional Lienard tyme model of a pipeline within the fractional derivative without singular kernel”, Advances in Difference Equations, 2016 (2016), 1–13 | DOI | MR
[34] Tuan N. H., Mohammadi H., Rezapour S., “A mathematical model for COVID-19 transmission by using the caputo fractional derivative”, Chaos, Solitons, and Fractals, 140 (2020), 110107 | DOI | MR | Zbl
[35] LePage W. R., Complex Variables and the Laplace Transforn for Engineers, Dover Publ., New York, 1961 | MR
[36] Triebel H., Interpolation Theory, Function Spaces, Differential Operators, Deutscher Verlag des Wissenschaften, Berlin, 1978 | MR | Zbl