Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2024_9_3_a12, author = {V. R. Abbazov and A. V. Mel'nikov and M. A. Rusanov and O. I. Sokolkov}, title = {Segmentation of forest felling using a pair of {Sentinel-2} space images in winter period}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {523--534}, publisher = {mathdoc}, volume = {9}, number = {3}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_3_a12/} }
TY - JOUR AU - V. R. Abbazov AU - A. V. Mel'nikov AU - M. A. Rusanov AU - O. I. Sokolkov TI - Segmentation of forest felling using a pair of Sentinel-2 space images in winter period JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2024 SP - 523 EP - 534 VL - 9 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_3_a12/ LA - ru ID - CHFMJ_2024_9_3_a12 ER -
%0 Journal Article %A V. R. Abbazov %A A. V. Mel'nikov %A M. A. Rusanov %A O. I. Sokolkov %T Segmentation of forest felling using a pair of Sentinel-2 space images in winter period %J Čelâbinskij fiziko-matematičeskij žurnal %D 2024 %P 523-534 %V 9 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_3_a12/ %G ru %F CHFMJ_2024_9_3_a12
V. R. Abbazov; A. V. Mel'nikov; M. A. Rusanov; O. I. Sokolkov. Segmentation of forest felling using a pair of Sentinel-2 space images in winter period. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 3, pp. 523-534. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_3_a12/
[1] Belov A.M., Myasnikov V.V., “Atmospheric correction of hyperspectral images using an approximate solution of the transport equation”, Computer optics, 38:3 (2014), 489–493 (In Russ.)
[2] Chavez P. S., Jr., “An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data”, Remote Sensing of Environment, 24:3 (1988), 459–479 | DOI
[3] Atmospheric correction by DOS method, https://gis-lab.info/qa/atcorr-dos.html?ysclid=lfkpvs0on6702807400
[4] Zhai H., Zhang H., Zhang L., Li P., “Cloud/shadow detection based on spectral indices for multi/hyperspectral optical remote sensing imagery”, ISPRS Journal of Photogrammetry and Remote Sensing, 144 (2018), 235–253 | DOI
[5] Skakun S., Weavers J., Brockmann C., et al., “Cloud Mask Intercomparison eXercise (CMIX): An evaluation of cloud masking algorithms for Landsat 8 and Sentinel-2”, Remote Sensing of Environment, 274:1 (2022), 112990 | DOI
[6] Wieland M., Li Y., Martinis S., “Multi-sensor cloud and cloud shadow segmentation with a convolutional neural network”, Remote Sensing of Environment, 230 (2019), 111203 | DOI
[7] Tarasov A.V., Operational mapping of forest cover disturbances on the basis of satellite data with high spatial and temporal resolution, Thesis, Candidate of Technical Sciences, Siberian State University of Geosystems and Technologies, Thesis, Candidate of Technical Sciences, 2021 (In Russ.)
[8] Lobo Torres D., Noa Turnes J., Juan Soto Vega P., et al., “Deforestation detection with fully convolutional networks in the Amazon forest from Landsat-8 and Sentinel-2 images”, Remote Sensing, 13:24 (2021), 5084 | DOI
[9] Zhou Z., Siddiquee M. M. R., Tajbakhsh N., Liang J., “UNet++: A nested U-Net architecture for medical image segmentation”, Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, Proceedings of 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, September 20, Granada, Spain, 2018, 3–11
[10] Fan T., Wang G., Li Y., Wang H., “MA-Net: A multi-scale attention network for liver and tumor segmentation”, IEEE Access, 8 (2020), 179656–179665 | DOI
[11] Sentinel-2 MSI. Processing Levels: Level-2, https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/processing-levels/level-2
[12] SNAP Supported Plugins: Sen2cor, https://step.esa.int/main/snap-supported-plugins/sen2cor/
[13] Main-Knorn M., Pflug B., Louis J., Debaecker V., Müller-Wilm U., Gascon F., “Sen2Cor for Sentinel-2”, Image and Signal Processing for Remote Sensing XXIII, 10427 (2017), 1042704
[14] Lanaras C., Bioucas-Dias J., Galliani S., et al., “Super-resolution of Sentinel-2 images: Learning a globally applicable deep neural network”, ISPRS Journal of Photogrammetry and Remote Sensing, 146 (2018), 305–319 | DOI
[15] Segmentation models: Python library with neural networks for image segmentation based on PyTorch, https://github.com/qubvel/segmentation_models.pytorch#models
[16] Segmentation Models, https://segmentation-modelspytorch.readthedocs.io/en/latest/
[17] Zeiler M. D., ADADELTA: An Adaptive Learning Rate Method, 2012, arXiv: 1212.5701 | Zbl
[18] Berman M., Rannen Triki A., Blaschko M. B., The Lovász-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks, 2018, arXiv: 1705.08790