Magnitocaloric effect in R$_3$Al$_2$ (R = Gd, Tb, Dy, Ho) alloys
Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 3, pp. 501-513.

Voir la notice de l'article provenant de la source Math-Net.Ru

Experimental studies of magnetic and magnetocaloric properties of polycrystalline alloys Gd$_3$Al$_2$, Tb$_3$Al$_2$, Dy$_3$Al$_2$, Ho$_3$Al$_2$ in external magnetic fields up to 3 Tesla have been carried out, and the change of the magnetic part of entropy in high magnetic fields generated by superconducting magnetic systems has been calculated. Magnetic measurements have shown that these compounds have low coercivity and reach saturation in low fields. It is found that the magnetocaloric effect in the studied compounds is observed in a wide temperature range, and for the intermetallides Gd$_3$Al$_2$, Tb3$_3$Al$_2$, Dy$_3$Al$_2$, Ho$_3$Al$_2$ has several existence regions comparable in the magnitude of the effect. The presence of several intervals of FEM existence is conditioned by a series of magnetic phase transitions in these ferrimagnetic compounds.
Keywords: magnetocaloric effect, magnetic cooling, natural gas liquefaction, rare-earth metals and alloys.
@article{CHFMJ_2024_9_3_a10,
     author = {M. V. Utarbekova and M. A. Orshulevich and D. Bataev and A. G. Fazlitdinova and S. V. Taskaev},
     title = {Magnitocaloric effect in {R}$_3${Al}$_2$ {(R} = {Gd,} {Tb,} {Dy,} {Ho)} alloys},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {501--513},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_3_a10/}
}
TY  - JOUR
AU  - M. V. Utarbekova
AU  - M. A. Orshulevich
AU  - D. Bataev
AU  - A. G. Fazlitdinova
AU  - S. V. Taskaev
TI  - Magnitocaloric effect in R$_3$Al$_2$ (R = Gd, Tb, Dy, Ho) alloys
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2024
SP  - 501
EP  - 513
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_3_a10/
LA  - ru
ID  - CHFMJ_2024_9_3_a10
ER  - 
%0 Journal Article
%A M. V. Utarbekova
%A M. A. Orshulevich
%A D. Bataev
%A A. G. Fazlitdinova
%A S. V. Taskaev
%T Magnitocaloric effect in R$_3$Al$_2$ (R = Gd, Tb, Dy, Ho) alloys
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2024
%P 501-513
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_3_a10/
%G ru
%F CHFMJ_2024_9_3_a10
M. V. Utarbekova; M. A. Orshulevich; D. Bataev; A. G. Fazlitdinova; S. V. Taskaev. Magnitocaloric effect in R$_3$Al$_2$ (R = Gd, Tb, Dy, Ho) alloys. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 3, pp. 501-513. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_3_a10/

[1] Liu W., Bykov E., Taskaev S., et al., “A study on rare-earth Laves phases for magnetocaloric liquefaction of hydrogen”, Applied Materials Today, 29 (2022), 101624 | DOI

[2] Buschow K. H. J., “Rare earth-aluminium intermetallic compounds of the form RAl and R$_3$Al$_2$”, Journal of the Less-Common Metals, 8:3 (1965), 209–212 | DOI

[3] Barbara B., Becle C., Lemaire R., Pauthenet R., “Magnetic properties of some rare earth-aluminum alloys”, Journal of Applied Physics, 39:2 (1968), 1084–1085 | DOI

[4] Pecharsky V., Gschneidner K., Dan'kov S. Y., Tishin A., “Magnetocaloric properties of Gd$_3$Al$_2$”, Cryocoolers, 10 (2002), 639–645 | DOI

[5] Hu Y., Yao J., Knotko A. V., Yapaskurt V. O., Morozkin A. V., Magnetic ordering and magnetocaloric effect of GdAl$_2$Si$_2$, Gd$_3$Al$_2$ and Gd$_3$Al$_{0.8}$Ga$_{1.2}$, Available at: https://ssrn.com/abstract=4489968, 2023

[6] Wang D.-H., Yin J.-H., Tang S.-L., et al., “Study on the magnetocaloric of alloy Gd$_3$Al${}_{2-x}$Ga$_x$”, Acta Physica Sinica, 48:13 (1999), 116–120 | DOI | MR

[7] Gao L., Wang P., Liu C., Cheng J., Zhong X., Guo F., Wan F., Li Z., “Microstructure, magnetism and magnetocaloric effect of Gd$_3$NiAl$_2$-alloys”, Physica B. Condensed Matter, 649:6 (2023), 414415

[8] Hu Z., Li H. Y., Jing Y. L., Zhe W., et al., “Magnetic properties and magnetocaloric effect in Tb$_3$Al$_2$ compound”, Journal of Alloys and Compounds, 615 (2014), 406–409 | DOI

[9] Buschow K. H. J., “The magnetic properties of the compound Dy$_3$Al$_2$”, Physics Letters, 29A (1969), 12–13 | DOI

[10] Barbara B., Becle C., Lemaire R., Paccard D., “High-performance magnets of rare-earth intermetallics due to an unusual magnetization process”, IEEE Transactions on Magnetics, 7:3 (1971), 654–656 | DOI

[11] Obermyer T., Merches M., Miller K., Sankar S. G., “Structure and magnetic properties of hot pressed Dy$_{3-x}$/R$_x$/Al$_2$/ system (R = Gd and Tb)”, IEEE Transactions on Magnetics, 28:5 (1992), 2856–2858 | DOI

[12] Szymczak R., Szymczak H., Gorge B., Lemaire R., “Low temperature domain structure in Dy$_3$Al$_2$”, Journal of Magnetism and Magnetic Materials, 66:1 (1986), 8–16 | DOI

[13] Li W., Zhang H., Yan T., Long K. W., et al., “Successive magnetic transitions and magnetocaloric effect in Dy$_3$Al$_2$ compound”, Journal of Alloys and Compounds, 651 (2015), 278–282 | DOI

[14] Barbara B., Fillion G., Gignoux D., Lemaire R., “Magnetic aftereffect associated with narrow domain walls in some rare earth based intermetallic compounds”, Solid State Communications, 10:12 (1972), 1149–1151 | DOI

[15] Zhang H., Xu Z. Y., Zheng X. Q., Shen J., Hu F. X., Sun J. R., Shen B. G., “Magnetocaloric effects in RNiIn (R = Gd–Er) intermetallic compounds”, Journal of Applied Physics, 109 (2011), 123926 | DOI

[16] Zhang Q., Cho J. H., Li B., Hu W. J., Zhang Z. D., “Magnetocaloric effect in Ho$_2$In over a wide temperature range”, Applied Physics Letters, 94 (2009), 182501 | DOI

[17] Chen J., Shen B. G., Dong Q. Y., Sun J. R., “Giant magnetocaloric effect in HoGa compound over a large temperature span”, Solid State Communications, 150 (2010), 157–159 | DOI

[18] Oesterreicher H., Parker T. F., “Magnetic cooling near Curie temperatures above 300 K”, Journal of Applied Physics, 55 (1984), 4334–4338 | DOI