Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2024_9_2_a5, author = {Yu. N. Grigor'ev and I. V. Ershov and A. G. Gorobchuk}, title = {Influence of thermochemical nonequilibrium on characteristics of boundary layer at flight in the {Martian} atmosphere}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {213--221}, publisher = {mathdoc}, volume = {9}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_2_a5/} }
TY - JOUR AU - Yu. N. Grigor'ev AU - I. V. Ershov AU - A. G. Gorobchuk TI - Influence of thermochemical nonequilibrium on characteristics of boundary layer at flight in the Martian atmosphere JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2024 SP - 213 EP - 221 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_2_a5/ LA - ru ID - CHFMJ_2024_9_2_a5 ER -
%0 Journal Article %A Yu. N. Grigor'ev %A I. V. Ershov %A A. G. Gorobchuk %T Influence of thermochemical nonequilibrium on characteristics of boundary layer at flight in the Martian atmosphere %J Čelâbinskij fiziko-matematičeskij žurnal %D 2024 %P 213-221 %V 9 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_2_a5/ %G ru %F CHFMJ_2024_9_2_a5
Yu. N. Grigor'ev; I. V. Ershov; A. G. Gorobchuk. Influence of thermochemical nonequilibrium on characteristics of boundary layer at flight in the Martian atmosphere. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 2, pp. 213-221. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_2_a5/
[1] Mack L. M., “A numerical method for the prediction of high-speed boundary-layer transition using linear theory”, Aerodynamic Analyses Requiring Advanced Computers, v. Part I, NASA, Washington, 1975, 101–123
[2] Milos F. S., Chen Y.-K., Congdon W. M., Thomas J. M., “Pathfinder entry temperature data, aerothermal, and heatshield material response”, AIAA Paper 98-2681, 1998, June, 1–16
[3] Armenise I., Reynie Ph., Kustova E., “Advanced models for vibrational and chemical kinetics applied to Mars entry aerothermodynamics”, Journal of Thermophysics and Heat Transfer, 30:4 (2016), 705–720 | DOI
[4] Kustova E. V., Nagnibeda E. A., “On correct description of a multi-temperature dissociating $\textrm{CO}_2$ flow”, Chemical Physics, 321 (2006), 293–310 | DOI
[5] Camac M., “$\textrm{CO}_2$ relaxation processes in shock waves”, Fundamental Phenomena in Hypersonic Flow, Cornell University Press, Ithaca, New York, 1966, 195–215
[6] Franko K. J., MacCormack R. W., Lele S. K., “Effects of chemistry modeling on hypersonic boundary layer linear stability prediction”, AIAA Paper 2010-4601, 2010, June–July, 1–13
[7] Rock S. G., Candler G. V., Hornung H. G., “Analysis of thermochemical nonequilibrium models for carbon dioxide flows”, AIAA Journal, 31 (1993), 2255–2262 | DOI
[8] Grigor'ev Yu.N., Ershov I.V., “Influence of vibrational excitation of the gas on the position of the laminar-turbulent transition region on a plate”, Journal of Applied Mechanics and Technical Physics, 62:1 (2021), 11—17 | DOI | MR | MR | Zbl
[9] Gaster M., “A note on the relation between temporally-increasing and spatially-increasing disturbances in hydrodynamic stability”, Journal of Fluid Mechanics, 14 (1962), 222–224 | DOI | MR | Zbl
[10] Mack L. M., Boundary layer stability theory, Preprint of JPL Technical Report, Document 900-277, California Institute of Technology, Rev. A. Pasadena, 1969 | MR
[11] Grigor'ev Yu.N., Ershov I.V., “Linear stability of the boundary layer of relaxing gas on a plate”, Fluid Dynamics, 54:3 (2019), 295–307 | DOI | DOI | MR | Zbl
[12] Mack L.M., “Linear stability theory and problem of supersonic boundary-layer transition”, AIAA Journal, 13 (1974), 278–289 | DOI