Influence of thermochemical nonequilibrium on characteristics of boundary layer at flight in the Martian atmosphere
Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 2, pp. 213-221.

Voir la notice de l'article provenant de la source Math-Net.Ru

In framework on the $e^N$-method, comparative calculations of position beginning zone of laminar-turbulent transition completed for two points on landing trajectory of “Pathfinder” spacecraft on surface of the Mars. The calculations used a three-component model of a thermochemical nonequilibrium mixture $\textrm{CO}_2/\textrm{CO}/\textrm{O}$. The set of frequencies of spatial disturbances is determined along neutral curves for first unstable modes of temporary disturbances. The transition Reynolds number $\textrm{Re}_{\delta T}$ was determined from envelopes of families of the $N$-factor curves at $N_T = 8$. In hypersonic regime at $\textrm{M}=12.6$, taking into account the developed thermochemical nonequilibrium leads to a significant decrease in the static temperature of gas in the lower part of the boundary layer. As a result, beginning of the zone of laminar-turbulent transition shifts downstream by approximately 9% compared to case of a perfect gas.
Keywords: Martian atmosphere, linear stability, laminar-turbulent transition, $e^N$-method, $N$-factors integral curves.
@article{CHFMJ_2024_9_2_a5,
     author = {Yu. N. Grigor'ev and I. V. Ershov and A. G. Gorobchuk},
     title = {Influence of thermochemical nonequilibrium on characteristics of boundary layer at flight in the {Martian} atmosphere},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {213--221},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_2_a5/}
}
TY  - JOUR
AU  - Yu. N. Grigor'ev
AU  - I. V. Ershov
AU  - A. G. Gorobchuk
TI  - Influence of thermochemical nonequilibrium on characteristics of boundary layer at flight in the Martian atmosphere
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2024
SP  - 213
EP  - 221
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_2_a5/
LA  - ru
ID  - CHFMJ_2024_9_2_a5
ER  - 
%0 Journal Article
%A Yu. N. Grigor'ev
%A I. V. Ershov
%A A. G. Gorobchuk
%T Influence of thermochemical nonequilibrium on characteristics of boundary layer at flight in the Martian atmosphere
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2024
%P 213-221
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_2_a5/
%G ru
%F CHFMJ_2024_9_2_a5
Yu. N. Grigor'ev; I. V. Ershov; A. G. Gorobchuk. Influence of thermochemical nonequilibrium on characteristics of boundary layer at flight in the Martian atmosphere. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 2, pp. 213-221. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_2_a5/

[1] Mack L. M., “A numerical method for the prediction of high-speed boundary-layer transition using linear theory”, Aerodynamic Analyses Requiring Advanced Computers, v. Part I, NASA, Washington, 1975, 101–123

[2] Milos F. S., Chen Y.-K., Congdon W. M., Thomas J. M., “Pathfinder entry temperature data, aerothermal, and heatshield material response”, AIAA Paper 98-2681, 1998, June, 1–16

[3] Armenise I., Reynie Ph., Kustova E., “Advanced models for vibrational and chemical kinetics applied to Mars entry aerothermodynamics”, Journal of Thermophysics and Heat Transfer, 30:4 (2016), 705–720 | DOI

[4] Kustova E. V., Nagnibeda E. A., “On correct description of a multi-temperature dissociating $\textrm{CO}_2$ flow”, Chemical Physics, 321 (2006), 293–310 | DOI

[5] Camac M., “$\textrm{CO}_2$ relaxation processes in shock waves”, Fundamental Phenomena in Hypersonic Flow, Cornell University Press, Ithaca, New York, 1966, 195–215

[6] Franko K. J., MacCormack R. W., Lele S. K., “Effects of chemistry modeling on hypersonic boundary layer linear stability prediction”, AIAA Paper 2010-4601, 2010, June–July, 1–13

[7] Rock S. G., Candler G. V., Hornung H. G., “Analysis of thermochemical nonequilibrium models for carbon dioxide flows”, AIAA Journal, 31 (1993), 2255–2262 | DOI

[8] Grigor'ev Yu.N., Ershov I.V., “Influence of vibrational excitation of the gas on the position of the laminar-turbulent transition region on a plate”, Journal of Applied Mechanics and Technical Physics, 62:1 (2021), 11—17 | DOI | MR | MR | Zbl

[9] Gaster M., “A note on the relation between temporally-increasing and spatially-increasing disturbances in hydrodynamic stability”, Journal of Fluid Mechanics, 14 (1962), 222–224 | DOI | MR | Zbl

[10] Mack L. M., Boundary layer stability theory, Preprint of JPL Technical Report, Document 900-277, California Institute of Technology, Rev. A. Pasadena, 1969 | MR

[11] Grigor'ev Yu.N., Ershov I.V., “Linear stability of the boundary layer of relaxing gas on a plate”, Fluid Dynamics, 54:3 (2019), 295–307 | DOI | DOI | MR | Zbl

[12] Mack L.M., “Linear stability theory and problem of supersonic boundary-layer transition”, AIAA Journal, 13 (1974), 278–289 | DOI